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Preface
The purpose of this study was to investigate the optimization of stochastic

response surfaces with linear programs. It was found that using the traditional approach

of estimating a response surface and using it as the objective function of a linear program

yielded a bias in the mean solution. Also, nonoptimal extreme points have a large

probability of bing chosen. This research investigated a method to overcome these

disadvantages and obtain an improved solution.
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Abstract
-VThis research investigated an alternative to the traditional approaches of

optimizing a stochastic response surface subject to constraints. This research

investigated the bias in the expected value of the solution, possible alternative decision-

variable settings, and a method to improve the solution. A three step process is presented

to evaluate stochastic response surfaces subject to constraints. Step I is to use a

traditional approach to estimate the response surface and a covariance matrix through

regression. Step 2 samples the objective function of the linear program (i.e., response

surface) and identifies the extreme points visited. Step 3 presents a method to estimate

the optimal extreme point and present that information to a decision maker.
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I Introduction

1.1 Background

Constrained and unconstrained optimization is a diverse and growing field with

applications in many areas. Two key optimization areas of interest in this research were:

optimization of simulation output with constraints and stochastic programming.

Response surface methodology can be used to optimize a system modeled by a

simulation. Response surface methodology typically incorporates three areas:

experimental design, regression analysis, and optimization. The response surface (i.e.,

the fitted regression model) generated from a stochastic simulation is a metamodel that

approximates the system being simulated. The coefficients of the response surface

representing the simulation in a design region are random variables. The random, or

stochastic, nature of the coefficients in the response surface is at the core of this research.

Typically, after establishing and validating a response surface the analyst ignores its

stochastic nature and employs it to estimate optimum operational conditions in a resource

constrained environment (11:138).

Stochastic programming, usually a completely separate field from response

surface methodology, concentrates on the stochastic nature of elements in math

programming problems. One aspect of stochastic programming concentrates on the

random nature of the coefficients in the objective function in a linear program while

assuming the constraints are deterministic. A literature review suggests there is little

incorporation of stochastic programming to simulation optimization; the research done is

limited in scope and solves only individual problems. No research effort has been found

that investigates the general process. Davis and West observe that:
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...recent research has demonstrated that there is indeed a role for the employment
of mathematical programming procedures with simulations... in modeling
situations where unceitainties are small, mathematical programming would be the
preferred choice. However, many decisionmaking problemsdo not meet this
criterion. For example, long-term production/inventory planning is often
analyzed using a mathematical programming formulation even though this
problem is known for its uncertainties arising in long-term demand forecasts, in
the costs of input material, and in manufacturing productivities... Another classic
problem for which considerable uncertainties often exist is the investment
portfolio selection problem... For any problem with severe uncertainties the
adopted approach of merging simulation with mathematical programming can be
applied. (5:200,209).

1.2 Problem Statement

The goals of this research are threefold. First, this research will characterize the

impact of the stochastic nature of the response surface on the optimization of a

simulation with multiple constraints. Second, this research will develop a means to

identify the "true" optimum point in practice. Third, this research will develop a method

to increase confidence in the point estimate on the optimal answer to the constrained

optimization problem.

1.3 Objectives & Related Methods

The goals of this research was met by accomplishing the following objectives.

Objective 1: To characterize the impact of the stochastic nature of the objective function

(response surface) coefficients on the distribution of Z* (the optimal solution to the linear

programming problem) and identify both the basis and extreme point changes.

Methods:

1. Generated a variety of linear programming problems to investigate the topic.

2. Wrote a computer program that performs a Monte Carlo process on the linear

program by varying the objective function coefficients and error term to be

2



sampled. Collected data on the distribution of Z*, basis changes, and sampled

optimum extreme points.

3. Defined a variety of variance-covariance matrices (o2(X'X) - 1) to generate the

multivariate normal distribution of the coefficients.

4. Defined five noise levels to test.

5. Ran a Monte Carlo procedure and evaluate the mean and variance for each

extreme point, basis, and for the overall solution.

Objective 2: Investigate a method to design an experiment on the response surface

coefficients that samples the response surface in an effective way.

Method: Used a Box-Behnken design and investigated modifications to the design that

better sampled the response surface.

Objective 3: Evaluated ways to better estimate the "true" optimal extreme point, and

present the data, to a decision maker, in an efficient way.

Methods:

1. Used a ranking and selection procedure to screen extreme points and identify

the "best" extreme point.

2. Investigated presentation of data through a histogram.
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2 Literature Review

2.1 Introduction

The following paragraphs will review literature pertinent to optimization of a

stochastic response surface subject to multiple constraints. Specifically, the discussion

covers the topics of experimental design, constrained simulation optimization, and

stochastic programming with Monte Carlo simulation.

2.2 Discussion

2.2.1 Experimental Design

Much research has been done on experimental designs since the 1950s (7:571).

The basic goal of experimental design is to choose the settings of the factor levels in a set

of experiments. In simulation, experimental design is the process of developing a

scheme to conduct an experiment on a simulation and collect output information deriving

the maximum amount of useful information with a minimum expenditure of resources.

In experimental design jargon, the input variables to the simulation are factors and the

levels (values) those variables can take are treatments.

Experimental design in simulation is distinguished from experimental design in

general by two things. First, in simulation the analyst specifies the factors and treatments

at the beginning to get the optimal design. Second, the input random variables for each

simulation experiment are controlled by the analyst who can exploit this by making

comparisons between experiments more precise, such as using the same pseudo-random

number stream for different experiments (i.e., using common random numbers).

Typical objectives of experimental design in a simulation are to

1. Understand the effect of the factors on the experimental output.

2. Estimate the parameters of interest.
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3. Make a selection from a set of alternatives.

4. Find the treatment levels for all factors that produce the optimum response

(3:105-223).

There are many types of designs, from the simple 2n factorial to specialty designs

to measure lack of fit, fit second order models, or control variance. The list of

experimental designs is extensive, although "the central composite [design] is used more

than any other family of RSM designs" (11:147).

A key influence in the stability in predicted variance is the rotatability of the

design: while a high degree of rotatability is desirable, a perfectly rotatability design is

not needed (11:138). Rotatability refers to the way variance propagates through the

design; in a perfectly rotatable design variance is only a function of the distance from the

center of the design. In other words, in a perfectly rotatable design, variance can be

defined as increasing in concentric circles expanding out from the center of the design.

In a near-rotatable design the variance can be thought of in the same way except the

circles are not perfect, but slightly elliptical. In light of variance considerations, Myers,

Khuri and Carter conclude

..the RSM user needs to learn from the Taguchi approach that system variability
should be a major component in the analysis. A similar argument can be made
for consideration of the distribution of variance of the prediction in the
assessment of experimental designs. Often the success of the RSM endeavor is
dependent on the properties of y [hat] at different locations in the design space.
Many standard designs have prediction variances which increase dramatically as
one gets close to the design parameter. As a result, any conclusions drawn
(regarding choice of optimal or improvements in operating conditions)
concerning response near the design boundary are suspect. Yet we see very little
that deals with this in design assessment or comparisons among designs. We too
often evaluate a design on the basis of one number (say, D-efficiency) when the
important aspects of behavior are multidimensional. (11:152)

Biles and Swain observe "the n-dimensional simplex design, which employs n+1

design points at the vertices of a regular simplex, gives the greatest efficiency in terms of
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information per design point" (2:138). Experimental design is a diverse area; only

through inves'igation will identification of the family of "best" designs occur.

2.2.2 Constrained Simulation Optimization

Classical simulation optimization is a broad field. Typical approaches to

optimization include heuristic searches, complete enumeration, random searches, steepest

ascent, coordinate searches, pa:tern searches and many otheis (6:117-121).

Biles and Swain present several strategies for constrained simulation optimization

that appear to be representative of the main constrained simulation optimization efforts

going on today. They fit and validate a response surface using an n-dimensional simplex,

biradial, or equiradial design. They account for the variance of the error term, but they

assume the "response surfaces are the expected values of the observed responses."

(2:135). They do not account for the stochastic nature of the response surface, but

employ a recursive method by applying an optimization procedure and then returning to

the simulation model until the optimal criteria are met. Their procedures include direct

search techniques, first-order response surface, and second-order response surface

procedures. The type of constraints Biles and Swain used are either simple (upper and

lower bounds) or multiple (e.g., budget or resource) constraints (2:135-137).

The choice between point estimation verses interval estimation, while important

to the analyst, has only recently been addressed:

Many users of RSM allow conclusions to be drawn concerning the nature of a
response surface and the location of optimal response without taking into account
the distributional properties of the estimated attributes of the underlying response
surface. Although the distribution of these quantities has not been considered
directly, efforts have been made to develop interval estimates. Box and Hunter
(1954) used a version of Fieller's theorem to develop a 100(1 - alpha)%
confidence region for the location of the stationary point. The construction of a
confidence interval around the response at the stationary point of the true surface
has only recently been a subject of interest in the statistical literature. Khuri and
Conlon (1981) gave an expression for the bounds of an interval conditional on the
estimated location of the stationary point. (11:146)
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The. experimental design impacts the distributional form of the underlying data, which in

turn, "has an impact on the estimation of the model parameters and on the inferences

drawn from an RSM analysis" (11:146).

Constrained optimization of stochastic simulations through linear programming is

starting to appear in the literature, but no literature has been found that evaluates the

impact of the stochastic nature of the response surface in the general case. Myers, Khuri

and Carter support this: "Nearly all practical RSM problems are truly multiple response

in nature. Sophisticated ways of solving [stochastic] multiple-response problems are not

generally well known, however" (11:147).

2.2.3 Stochastic Programming

Stochastic programming considers three stochastic areas of math programming:

the objective function cTx, constraint matrix A, and the right hand side b vector.

Traditionally, stochastic programming has not been incorporated in simulation

optimization analysis.

There are three classical approaches to solving stochastic programming problems

where the coefficients vary: expected value, "Fat," and "Slack" approaches. The

expected value approach uses the point estimate for the coefficients to solve the math

programming problem. The "Fat" approach chooses a pessimistic value for the

coefficients in the math programming problem. The "Slack" solution method assumes

randomness in the constraint matrix and the right hand side and adds a penalty function

to the objective function. The "Slack" method is a two-stage problem that assumes the

decisionmaker can adjust a previous decision (9:463-470). These three approaches to

stochastic programming are used when the coefficients are either random or constrained

to a given set. Another area of stochastic programming is chance constrained

optimization: "[In this] approach, it is not required that the constraints should always

7



hold, but we shall be satisfied if they hold in a given proportion of cases or, to put it

differently, if they hold with given probabilities" (13:75).

Most analytical methods assume no basis changes take place, and many do not

account for changes in the extreme point solutions (12:211). Under these assumptions

analytical methods have been developed to estimate the mean and the variance of the

stochastic program:

...[Consider] the cost of minimizing C = c x [the objective function], where the
components of the vector c had a joint normal distribution with means mj and

covariance matrix V. C is then also normally distributed with mean M = mTx

and variance S2 = xTVx.

If all coefficients and constants of the constraints are fixed, and if we want to
minimize the expected value of C, then the problem is reduced to the
deterministic program of minimizing mTx. But let us assume that we want to
minimize the expected utility of C, which we define as: 1 - exp( -aC) where a is a
positive constant, which economists call a measure of the aversion to risk.
(13:23-24)

Vajda goes through a proof that reduces the problem to a "deterministic program of

minimizing aM - .5a2S2, a function which is quadratic in x" (13:24).

The feasibility of the solution to a stochastic program is a topic of much research.

Randomness in the constraint matrix or the right hand side b vector can cause the

solution to be super-optimal and infeasible. If only the objective function is stochastic,

the solution will remain feasible and only the optimal value will change (13:3).

Bard and Chatterjee introduce a perspective of the variability of a design that is

specifically concerning objective function bounds for the inexact linear programming

problem with generalized cost coefficients. They conclude that increasing the

"oblongness" of the variance of the coefficients in the objective function rather than

decreasing their volun.e provides better results when solving the stochastic linear

program (1:491). In other words, uniform variance in the coefficients of the objective

8



function is not necessarily desirable, but decreasing variance of one coefficient at the

expense of others may lead to improved LP solutions.

Bracken and Soland present a paper on "a statistical decision analysis of a one-

stage linear programming problem with deterministic constraints and stochastic criterion

function" (4:205). This paper presents analytical and Monte Carlo methods to find the

expected value of both perfect and sampled information, but it is not possible to solve the

analytical problem when the objective function coefficients come from a multivariate

normal distribution. In addition, this article presents a method to describe the

"...distribution of the optimal value of the linear programming problem with stochastic

objection function and [discusses] Monte Carlo and numerical integration procedures for

estimating [the optimal value] distribution" (4:205).

A misconception exists that there is no need to evaluate the stochastic nature of

the objective function in a linear program because the analyst can use sensitivity analysis

to conduct a proper evaluation. Davis and West address this misconception:

Post-optimal or sensitivity analysis provides the modeler with the ability to
analyze the functional behavior of the optimal solution as parameter assignments
are modified, but these methods again provide little insight toward the probable
values that the optimal solution [of a stochastic problem] will assume. For this
reason it is often difficult to choose a robust solution. (5:199)

Bracken and Soland observe that the optimal solution to any linear program will

always occur at an extreme point: therefore only extreme points need to be considered.

In other words, if all the extreme points can be identified, then the actual linear

programming problem does not need to be solved, but instead a Monte Carlo procedure

can be used to evaluate the probability distribution of the simulation output at each

extreme point. The value of the extreme points can then be evaluated and compared to

identify the top-ranking alternatives. This article refers to an article by C. E. Clark in

which he describes a method (using a reduced set of extreme points) approximating the

characteristics of the distribution of the "...maximum value of the (reduced) linear

9



programming problem admitting only the p selected alternatives." (4:212,214). "p is a

subset of the overall (assumed independent) extreme points.

There are several reasons for studying the reduced linear programming problem.
First of all, the number r of extreme points which comprise the set S may be so
large that the decision maker finds it undesirable to consider ail of them in his
analysis of the decision situation. He may therefore decide to limit his further
analysis to the p selected alternatives. The smaller number of alternatives thus
available makes computation of the EVPI [Expected value of perfect information]
and/or the EVSI [Expected value of sampled information] much more feasible.
Second, the expected value of the maximum value of the reduced problem is a
lower bound to the corresponding quantity for the original problem, and could
therefore serve as an estimate of the expected value of the maximum value of the
original problem. We would expect the bound to be best when the p selected
alternatives are the p top-ranking alternatives (in order) with respect to the prior
distribution on c [the unknown mean vector of a multivariate stochastic process].
(4:212)

Clark's procedure, as contrasted with a Monte Carlo simulation

has the advantage that the results may be obtained quickly and cheaply for
different selections of the alternative extreme points and/or different parameters
in the distribution of e. The accuracy achieved with Clark's procedure is
somewhat limited, however, especially when the distribution of v [where v is the
objective function] is degenerate, whereas great accuracy can be achieved in
Monte Carlo simulation if a sufficiently large number of draws is used...One
difficulty is that the values obtained with Clark's procedure are dependent upon
the order in which the variables are listed. (4:214-224)

Davis and West present both a decision theory approach and a Monte Carlo

approach to solving this problem.

Decision theory begins by predefining the alternative solutions that will be
considered. Next potential realizations for the decisionmaking environment must
be specified with apriori assignment of the probability that each realization occur.
Using this information, the trade-offs among the alternatives are then analyzed,
and the apparent optimal solution alternative is selected. Decision theory does
generate the probability that each alternative will be the optimal solution.
However, the analysis is limited by the number of predefined alternative solutions
selected and the accuracy in the specification of the a priori probabilities for the
potential states of the systems... generation of probabilistic bounds upon the
optimum solution requires considerable computational effort with the
mathematical programming approach whereas decision-theory approaches
provide this information directly.. .Although these analyses are still typically
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limited to the consideration of a finite set of alternatives, the methods of response
surface methodology coupled With classical optimization approaches have been
used to optimally assign key parameter values within simulated systems operating
under the selected alternative. (5:199-200)

Davis and West, instead of defining the possible solution states, use the simulated

decisionmaking scenarios from the Monte Carlo analysis and assume each scenario has

an equal probability of occurring (5:207). The above approach belies the difficulty in

identifying the possible scenarios and their probability Of occurring. The paper was

introduced as a contrast between the methods of decision-theory and Monte Carlo

simulation, but the decision analysis builds on the results from the Monte Carlo analysis.

Also, the paper presents an analysis of only a single study and not an evaluation of the

overall process (5:199-209).

2.3 Summary

Incorporating stochastic programming in the optimization procedure for

stochastic simulations vith constraints has recently been used in limited cases, but no

overall evaluation of the process has been done'. In solving problems with random

coefficients

difficulties arise from two sources. First, meaningful simulation models must be
generated from which the uncertain parameter values can be sampled. Second,
the ability to statistically analyze the results from numerous sample optimal
solutions generated (luring the simulation must be demonstrated. Even if both
difficulties are addressed, the task still remains of selecting the decision which
provides the best compromise between optimality and risk. (5:209)

Morben, in solving a "real world" problem, demonstrates a case where using the expected

value of a stochastic objective function leads to an answer which falls outside a 95%

Coi 'idence bound found through a Monte Carlo analysis (10:27). This case clearly

I T~is research will analyize the overall process and look into ways to incorporate experimental design in
the stochastic programming subportion.
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demonstrates there is a-risk in some situations if only the expected value is used, and it

makes the case for incorporating some form of stochastic analysis. Experimental design,

constrained simulation optimization, and stochastic programming are all well developed

fields while the need to incorporate aspects of all three seems to exist little research has

been done to achieve this goal.

12



3 Phase I: Impact of Estimation Errors Methodology

3.1 Introduction

Phase I investigated how errors in estimating the response surface affect the

estimate of the optimal solution of the maximizing linear program. Figure 1. shows the

basic approach

Simulation Model- Y

iDesign of
Response Surface -< ------ Experiments #1
Methodology

jIFFYValidate Model

Y = FIX) + error

Design of

^MAX...... Experiments #2MAX F(X) =Z I -OR

stAX b-OR-
------. Monte Carlo

Estimate:
E(Z), VAR(Z), BIAS

Figure 1. Analysis Flow

3.2 Starting Hypothesis

This research phase considers the simulation a black box that consists of a 'Truth

Model" plus noise.

13



Decision Variable Respons
Truth Model +e

Settings

Figure 2. Black Box Simulation Model

The simulation response serves as input to the estimate of a response surface (the

objective function of a linear program). The Functions:

Z* = LP(C, A, b) (1)
= LP(, A, b) (2)

define the optimal value Z* (or estimated optimal value *) of a linear program

employing the revised simplex method. Where

C = cTx true (or known) objective function

t=ATx estimated objective function

A = constraint matrix

b = right hand side vector.

c = true surface coefficients underlying the metamodel
Ac = c + F estimated coefficients of objective function (response surface)

Assumption: e - N(O,2(XTX)- 1)

Phase I started with the premise that Z (the "true" optimum) is equal to the

expected value of the parameters of the linear program:

Z= LP(E(t, A, b)) (3)

but, it will be demonstrated that Z* is not, in general, equal to the expected value of the

linear program with the estimated value of the objective function:

Z= LP(C, A, b) = LP(E(t, A, b)) = E(LP(t, A, b)) = E(2*) (4)

14



Further, as the standard error in the estimates of the coefficients increases the bias in *

and 2(2*) increases.

3.3 Testing Hypothesis

This research used a computer program to test the hypothesis in Equation 4. The

computer program uses a Monte Carlo approach; sampling from a "Truth Model" with

noise it generates a response surface which is used as the objective function of a linear

program. The objective function is then sampled using the variance-covariance matrix

generated from the regression of the design matrix and response while collecting

statistics at all stages (see Figure 3).

3.4 Investigating Indicated v. True

Besides characterizing the distribution of the estimated optimal solution, this

research investigated what solution an analyst might expect in practice versus the "true"

solution. The analyst estimates two key elements: the optimal extreme point 0E*) and

the optimal value given that point (2*). Theoretically, any changes to the linear program

could change characteristics of the comparison, but this research will investigate whether

there is a common trend to be identified.

To characterize the possible results the computer program generates an estimated

objective function (response surface) and solves tile linear program. Both the estimated

optimal value and the estimated optimal extreme point are generated and compared to the

true optimal extreme point, its value, and the value of the true function at the estimated

extreme point (later these values are sorted and plotted to give a visual representation of

the comparison). Contrasting these plots with plots of different linear programs and at

different noise levels gives insights to the problem.
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Define
Regression Portion: - LP Portion:

Design Matrix Constraint Matrix
True Objective Function Right Hand Side
Noise Level

Noise Level Loop

Sampled Objective Function Loop

- Generate Response Y based on Design Matrix &

Single Noise Sample Solve Regression for:

P - Estimate of Objective Function

Varlance-Covarlance Matrix

Multivariate Normal Generation for Sampled
Objective Function Loop

- Solve Linear Program

Collect & Print Statistics on:

- Decision Variable Sets

Extreme Points

Overall Objective Function
- Visits to true extreme point

Figure 3. Computer Flow
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4 Results Phase I

4.1 Introduction

There is no singular "true" answer to Phase I, but it appears the general process

can be characterized. Consistent results were found for all maximization problems

studied by evaluating different linear programs at different noise levels and generating

random "Truth Models". The following results capture what can be expected in the

general case. As noise is introduced in the estimation of the objective function the

estimated optimal extreme point will vary as shown in Figure 4.

Realizations of Objective
Function as a Random Variable

Extreme Points

Feasible Region __

Figure 4. Objective Function Noise

4.2 Bias and Variance

An additional module was added to the computer program to generate random

"truth models," constraint matrices, and right hand side vectors. The output from this

module characterized this basic approach over a variety of linear programming problems.
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Always, for the randomly generated maximization problems tested, the computer

program indicated that the value of the "True" linear program is less than or equal to the

value of the linear program with noise:

Z* < E(LP(t, A, b)) = (5)

This can be graphically represented in the following figure:

Do LP -

Z*

C Z

Figure 5. Noise Impact & Bias

this figure shows how a normally distributed estimate of the objective function affects

the normal distribution in the estimate of the optimal value 2*.

The high bias in the estimate of the mean was present in all linear programming

problems analyzed (and those randomly generated). Also, as the noise level increased in

a given problem the bias increased in a roughly linear trend; here the bias is the mean

estimated optimum minus the true optimum.

Bias = E(2*) - Z* (6)

The following figures illustrate a typical case where the standard error = a(parameter

estimates). The underlying linear program, in this case, is:

Maximize 15x1 + 17x2 + 18x 3 + 20x4 + 10

Subject to x1 + x2 + 2X3 + X4 < 12

2x 1 + x2 + -x3 + x4 14

-x1 + x2 + x3 + 2x4 10

x1  x2 x3 X4 0
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Figure 6. Bias Inflation

The bias increases as the standard error increases, and the standard deviation of *

follows a similar trend as shown in the Figure 7.

60

40 -

I -

"20" I

O0 1 2 3 4 5
Standard Error

Figure 7. a(Z*) Inflation

Combining the last two points, one can expect as c(parameter estimates) increases not

only does the bias increase, but the spread in 2*increases.

4.3 Indicated v. Actual Solutions

The bias in the estimated value of the optimal answer only illustrates the trend

over multiple realizations, but an analyst may be interested in what he can expect in one

realization of the process. Here, let's go a step beyond the statistics in the previous
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section dealing with bias and analyze the contrast between each 2* and the actual value

of choosing that extreme point. In the following figures

True = value of "Truth Model" given the extreme point con'esponding to

Indicated = 2*

The extreme point for 2* is that extreme point the linear program chooses as optimal.

The following figures are characteristic of all problems evaluated. The following points

are of interest:

1. The True solution is sorted in descending order where the first (left most)

extreme point represents the "true" optimal extreme point.

2. The Indicated solutions are soiled in descending order around their extreme

point.

3. All points in the plots are equally likely in a single realization of the process

(8000 samples).

4. For a point estimate there is no way to know if the estimate is high or low

without prior knowledge.

5. The distribution of the solution around each extreme point is normally

distributed with a bias.

6. As Y increases the percent of visits to the "true" optimal extreme point

decreases.

7. As Y increases there is a greater chance that the chosen extreme point will be

greatly inferior to the "true" optimal extreme point, but there is still a chance 2*
with be much higher than even the "true" optimal extreme point Z*.

8. The chance of selecting the solution with the chosen extreme point within 10%

using 2* occurs only about 10% of the time.

9. Extreme point changes occur where a True value step change occurs and

where the Indicated value jumps from a low value to a high value.

20



350

. I.

300 -- "
i "I - -- ,,-

. - . .. .._:'.,

Figure 20 Indicate 0v Actual -- 2.25
S Ii i

150-

100 I I I IIII
0

Figure 8 Indicated Z* vsAta =25

When a = 2.25 visits to the "true" optimal extreme point occur about 14% of the

time, and about 98% of the solutions are "close" to the "true" optimal extreme point.

50III I Iii

400 -

Tre i •, ,

300 , ,Indicated1  , ,,, ,~ I

S ,, -- -I * I

u %

100

Figure 9 Indicated Z vs Actual : 3.25

When a 3.25 selecting the "true" optimal extreme point occurs about 7% of the

time, and about 92% of the solutions are "close" to the "true" optimal extreme point.
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When a = 4.25 selecting the "true" optimal extreme point occurs about 6% of the

time, and about 91% of the solutions are "close" to the "true" optimal extreme point.

A single realization of the process (or point estimate) gives little information on

how the chosen extreme point will actually perform. Other techniques must be

investigated to put this information into practical application.
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5 Phase I! Sampling Extreme Points Methodology

5.1 Introduction

Phase I illustrated that limited information about the true solution can be obtained

from a single realization of the process. The estimated extreme point may lead to a

highly biased solution compared to the true extreme point. Phase II investigated how to

obtain the true extreme point using two methods. The first method samples the generated

objective function (in a Monte Carlo fashion) using the variance-covariance matrix from

the regression analysis and catalogs the extreme points visited. The second method

samples the generated objective function via a design and catalogs the extreme points

visited. Identifying the optimal extreme point may be possible by sampling the

simulation at each extreme point visited--this will be investigated in Phase III. Also,

empolying a screening technique will be investigated to improve the efficiency of the

process.

5.2 Starting Hypothesis

As a starting hypothesis, this research assumes that given an initial response

surface and its associated variance-covariance matrix we can sample the "true" optimal

extreme point.

Pr("true" optimal EP sampled I initial estimated EP & ̂ 2(XTX)-I) = 1

as N - o

where

EP = extreme point

initial estimated EP = extreme point identified when the objective function is

assumed to be deterministic and the LP is solved once.

N = number of objective function samples.
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02(XTX)-l variance-covariance matrix driving multiyariate normal sampling.

5.3 Visits to true Extreme Points via Sampling

In practice, analysts usually only have one estimate of theobjective function, but

in this research the computer program can generate any number of objective functions.

Calculating a variance-covariance matrix for each response surface the program then uses

it as input to generate a multivariate normal sample. The computer program then

samples from this distribution an arbitrary number of times and tests if the computer

program samples the "true" extreme point. The computer program evaluates this process

by combining these two sampling routines in a Monte Carlo fashion (call this the brute

force approach). Of course, without knowing the "true" extreme point aprioli there is no

way of knowing the "true" extreme point was sampled in practice. In this research the

"true" solution is known at the outset because the computer program defines the

underlying truth model.

5.4 Visits to true Extreme Points via Design

As an alternative to the brute force approach of Monte Carlo sampling this

research investigated sampling using a design. This is investigated by applying a Box-

Behnken design (3:519) with only one sample at the zero level. The goal is to sample the

true extreme point, a design is used to try to minimize the number of samples of the

objective function of the linear program. Modifications to the Box-Behnken design were

investigated.

5.5 Screening Extreme Points

Evaluating the estimated objective function using either Monte Carlo sampling or

a design, requires solving a linear program for every sample of the objective function.

Solving multiple linear programs requires a lot of computer time, and for a large problem
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threatens to make this research impractical. If a way could be found to test each sampled

objective function to see if its optimum basis has previously been sampled then a

screening method could be applied to reduce the number of linear program solutions

required. In this research, only the objective function is stochastic and therefore only

optimality, and not feasibility, is an issue. The optimality condition, for a maximization

problem, in the general case is:

C -CB B-1 A 0 (7)

where

c = objective function

CB = coefficient of the basic variables

B-1 = inverse of columns under basic variables

A = constraint matrix

The specific equation is:

t- tB B 'I A < O (8)

where

'e = the coefficients of the sampled objective function

V B = the coefficients of the sampled objective function associated with the basic

variables.

As new extreme points are sampled their corresponding B1 A matrix and a vector

identifying the basic variables are stored in a set, this set is then used to screen new

objective function samples. For every new sample of the objective function the computer

program cycles through the B-1 A matrices using Equation 8 until the optimality

condition is satisfied, if the optimality condition is not satisfied it solves the linear

program to identify a new basis. Using this technique a linear program is solved only

once for each unique extreme point sampled.
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6 Phase II: Investigation Results

6.1 Introduction

Sampling the estimated objective function to-include the"true" optimal extreme

point in the sampled set proved an effective method. While it is not possible to identify

the "true" optimal extreme point when sampled, it is possible to sample a set of extreme

points which include the "true" optimal extreme point.

6.2 "True" Extreme PointVisits w/ Monte Carlo Sampling

Monte Carlo sampling proved a effective method of sampling over a broad range

of problems. As is expected, the probability of sampling the "true" optimal extreme

point increases as the number of Monte Carlo samples increases. The numbers of Monte

Carlo samples required for a given confidence level presumably increases as the number

of decisions variables increases and as the error in the estimate increases. This research

has not investigated any method to determine a priori the number of samples required to

achieve a given confidence level. The following tables are typical results for problems

involving 4 decision variables. The percent "true" optimal extreme point miss is

evaluated by replicating the process 1000 times.

Standard Error 1.25 11.25 12.25 13.25 14.25
100 Samples
% Miss "true" 1.8 11.8 12.6 15.2 10.0
200 Samples
% Miss "true" 1.0 11.6 1.9 12.4 14.25
300 Samples
% Miss "true" 1.8 11.3 ]1.5 1 2.3 13.7
500 Samples
% Miss "true" 1.5 .9 1.3 1.9 3.1

Table 1. Monte Carlo Samples
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An advantage to Monte Carlo sampling is that if the analyst has the time and resources,

and wants to be conservative, the number of Monte Carlo samples could be increased.

While Monte Carlo sampling is the least efficient, if the analyst is willing to take enough

samples, it could be the most effective in sampling the "true" optimal extreme point.

6.3 "True" Extreme Point Visits w/ Design Sampling

First, a modified Box-Behnken design was used to sample the objective function

of the linear program. The modification involved only one sample at the zero level. The

sampling was done by varying the estimated objective function coefficients by a percent

of the estimated standard deviation (called standard deviation multiplier) in a method

prescribed by the design. This approach was possible, in this case, because an orthogonal

design was used to sample the original "Black Box Simulation" to estimate the response

surface, as a result there are no off-diagonal elements in the variance-covariance matrix.

A more complicated method is need if off-diagonal elements were present, but it seems

an initial orthogonal design is a reasonable approach. An example of a four-variable Box-

Behnken design is found in Appendix B.

Table 2 illustrates the results from a single Box-Behnken design with shown

standard deviation multipliers.

Standard Error 1.25 1.25 12.25 13.25 14.25

Standard Dev 1.5
% Miss "true" 2.0 3.2 6.7 18.2 30.7
Standard Dev 2.0
% Miss "true" 1.9 11.3 17.0 122.3 137.1
Standard Dev 2.5
% Miss "true" 1.2 1.8 111.5 132.7 141.6
Standard Dev 3.0
% Miss "true" .1 1.5 18.4 38.9 50.6

Table 2. Single Box-Behnken Design
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Tests using this single Box-Behnken design showed limited success. It appears this

single design is inadequate to sample the "true" extreme point.

The second modification to the standard Box-Behnken design was to double the

length of the design by sampling at each design point twice. For every identical pair of

design points different standard deviation multipliers were used. In effect, a three-level

design was transformed into a-pseudo five-level design. It is not a true five-level design

because each design point has only three levels, it is really the same design run twice

with two different standard deviation multipliers. Table 3 shows results of this

technique.

Standard Error 1.25 11.25 2.25 13.25 14.25
Standard Dev's 1, 1.5
% Miss "true" 4.0 5.5 6.5 7.5 120.5
Standard Dev's 1.5, 2
% Miss "true" .9 1.5 3.6 9.9 120.2
Standard Dev's 1.5, 2.5
% Miss "true" .2 .1 2.8 10.3 19.6
Standard Dev's 1.5, 3
% Miss "true" 1.25 10.0 1.65 9.1 120.3
Standard Dev's 1, 2.5
% Miss "true" .2 .1 2.4 9.9 17.1
Standard Dev's 1,2
% Miss "true" .9 1.5 3.6 8.1 16.0
Standard Dev's 1,3
% Miss "true" 10.0 10.0 2.2 11.0 120.3

Table 3. Double Box-Behnken Type Design

The double Box-Behnken design (sampling the objective function 49 times)

shows promise. Results with the double Box-Behnken design are superior to sampling in

a Monte Carlo fashion 49 times.
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Standard Error 1.25 11.25 12.25 13.25 14.25
% Miss "true" 1.2 4.0 5.8 12.3 18.6

Table 4. 49 Monte Carlo Samples

Results over a broad range of problems indicate this design is superior, but not

dramatically, to an equivalent number of Monte Carlo samples. In general, either case

fails to give confidence in the results.

The next modification includes adding a third Box-Behnken design to the

previous two designs and sampling it at a different standard deviation, this is a pseudo

seven-level design. In essence, this is equivalent to sampling from three consecutive

designs.

Standard Error 1.25 1 1.25 12.25 13.25 .4.25

Standard Dev's .5, 1.5, 2.5
% Miss "true" 1 0.3 0.2 1.4 5.8 10.6
Standard Dev's 1.0, 2.0, 3.0
% Miss "true" 0.1 0.2 0.8 4.8 11.5
Standard Dev's 1.0, 1.75 2.5
% Miss "true" 1 0.3 10.2 11.1 14.4 _9.9
Standard Dev's .5, 1.75, 3.0
% Miss "true" 0.1 10.2 0.8 5.0 [ 10.6
Standard Dev's 1.0, 1.75 2.5
% Miss "true" [0.9 13.2 17.4 15.5 126.1

Table 5. Triple Box-Behnken Type Design

The triple Box-Behnken design had good results, but required more samples. In

this case, the triple Box-Behnken design (with four decision variables) was sampled 73

times. As a comparison, the results of 73 Monte Carlo samples are presented in Table 6.

Standard Error 1 .25 11.25 12.25 13.25 1 4.25
% Miss "true" 1.0 2.2 4.3 7.7 12.5

Table 6. 73 Monte Carlo Samples
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Again there is an advantage to the design over the equivalent number of Monte

Carlo samples. The main advantage to a Monte Carlo approach is that the number of

samples can be arbitrarily increased to achieve the confidence desired, this may be

desirable if a higher confidence in the solution in needed than is possible with this

design. To this point, each design was an improvement over an equivalent number of

Monte Carlo samples, but no design gave a high success rate at higher noise levels.

In an effort to improve the success rates with higher levels of noise another type

of modification to the basic Box-Behnken design was investigated. In this case, the basic

structure at each design point was modified. Instead of sampling at the design points

using a three-level approach of 1, -1, or 0, this new design was a true five-level design

where each design point was sampled with some combination of 1, -1, .5, -.5, or 0. This

modification doubles the length of the design and at each design point alternatively

samples form either I or .5. An example of this new design is found in Appendix B.

Standard Error .25 11.25 12.25 13.25 14.25
Standard Dev 1.5
% Miss "true" 5.1 6.8 10.3 12.5 15.5
Standard Dev 2.0
% Miss "true" 11.7 13.1 14.0 16.3 110.8
Standard Dev 2.5
% Miss "true" 1.5 1.8 12.1 15.3 11.2
Standard Dev 3.0
% Miss "true" 0.0 .6 1.7 5.7 12.3

Table 7. Single 5-level Box-Behnken Type Design

The single modified 5-level Box-Behnken design has 49 design point, the same

number as the double Box-Behnken design presented in Table 3. The 5-level design has

a higher success rate in sampling the "true" optimal extreme point than either the double

Box-Behnken design, or a equivalent number of Monte Carlo samples. The 5-level Box-

Behnken design represents an improvement Nvhen sampling at higher noise levels, but the

errors could still be considered significant.

30



A further modification attempts to decrease the errors in sampling the "true"

optimal extreme point by doubling the design and choosing a different standard deviation

multiplier for the second half of the design. This modification is analogous to the change

creating the double Box-Behnken design. This design creates a pseudo nine-level design.

The results of 1000 replications of this design are contained in Table 8.

Standard Error 1.25 11.25 12.25 1 3.25 14.25
Standard Dev .5, 1.75
% Miss "true"l 2.67 4.0 6.6 9.2 12.9
Standard Dev 1.0, 2.0
% Miss "true" 1.8 2.9 4.5 6.2 10.2
Standard Dev 1.5, 2.5
% Miss "true" 0.8 1.2 1.9 3.2 6.1
Standard Dev 1.5, 3.0
% Miss "true" 0.2 0.3 1.0 2.6 6.8

Table 8. Double 5-level Box-Behnken Type Design

The double modified 5-level Box-Behnken design gave excellent results. This design

gave the best results for methods with about 97 samples, and it is competitive with a

Monte Carlo method of 200 samples.

In the next modification another modified 5-level design is added and sampled at

a different standard deviation. This pseudo 13-level design (four variables) has 145

design points. The results are found in Table 9 and show excellent results.

Standard Error .25 1.25 2.25 3.25 4.25
Standard Dev 1.0, 2.0, 3.0
% Miss "true" 0.1 0.3 0.3 1.9 3.0
Standard Dev 1.5, 2.5, 3.5
% Miss "true" 10.0 10.1 10.1 1.1 12.9
Standard Dev 1.5, 2.75 4.0
% Miss "true" 1 0.0 1 0.0 10.1 10.5 11.9
Standard Dev 1.5, 3.0, 4.5
% Miss "true" 0.0 10.0 10.0 0.5 12.2

Table 9. Triple 5-level Box-Behnken Type Design
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145 samples of the triple 5-level Box-Behnkcn design was superior to all Other designs

and even superior to 500 Monte Carlo samples. This design provides excellent sampling

in an relatively efficient manner. The main drawback is that it requires 145 samples with

only four variables. If this full design is run its length will double with every added

variable. As a possible way to offset the time required to solve this many linear

programs this research investigated a method of screening sampled objective functions to

decrease the computations required.

Another interesting consideration is the number of extreme points visited with

different sampling techniques. If one sampling method provided high accuracy, but

required may more extreme points to be sampled, then it might not be the best design to

employ. Fortunately, no design greatly increased the number of extreme points sampled.

Table 10 illustrates the total unique extreme points sampled for 200 Monte Carlo samples

and two design, these results are typical of all sampling options.

Standard Error 1.25 1.25 12.25 13.25 F4.25
200 Monte Carlo
# unique ext. points 13 4 16 18 19
Double 5-level Box- 1.5, 2.5
Beliken Type
# unique ext. points 12 13 15 18 18
Triple 5-level Box- 1.5, 2.75, 4.0
Behnken Type
# unique ext. points 12 14 15 17 18

Table 10. Total Unique Extreme Points Sampled by Case

6.4 Screening Extreme Points

The main drawback to using the above approaches is the need to solve a linear

program for every sampled objective function. Screening the new objective function

samples proved an efficient technique. With this technique, a linear program is solved
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only once for each sampled extreme point. The improved efficiency will vary from

problem to problem and will also depend on the number of objective function samples,

but improvement can be measured in orders of magnitude. Applying this technique

greatly increases the practicality and efficiency of the research. Using this screening

procedure makes a strong case for using the triple 5-level Box-Behnken design approach

with a large number of samples.

In this research the IMSL Fortran Library was used to evaluate the revised

simplex method, but it does not return a B- 1 matrix, only values for the optimal value

(Z*), the primal and dual solutions of the decision variables. To employ this screening

technique the B- 1 matrix must be found. The B matrix was found by choosing the

columns tinder the basic variables. The values of slack variables are not given; therefore,

when slack variables are basic the computer program uses the principle of

complementary slackness to identify the values of the corresponding columns in the B

matrix.
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7 Phase Ill: Selecting the Optimal Extreme Point

7.1 Introduction

Phase II established a method to sample extreme points with the goal of including

the "true" extreme point in the sample. Phase Ill's aim is to pick the "true" optimal

extreme point from the population of sampled extreme points. To do this, consider the

extreme points as settings of the input decision variables to the simulation.

7.2 Starting Hypothesis

After identifying the feasible extreme points, the linear program is no longer

needed, and the decision variable settings at any extreme point are used as input to the

simulation to estimate Z*. Once a set of decision variable settings is selected the

problem becomes selecting the "best" option. This research starts with the premise that

given a set of sampled extreme points containing the "true" optimal extreme point, it can

be identified as the optimal given enough sampling:

i = E(EPi) as N -+ -o (9)

If EP* c EP then

E(EP*) = max (Di = Z* (10)
i

where

N = number of samples from simulation (i.e., simulation runs)

Di = Value of 'Truth Model" at ith extreme point

EP* = "true" optimal extreme point

EP = set of sampled extreme points

EPi ith extreme point in sample (arbitrary ordering)

Using this method it may be possible to both identify the "true" optimal settings for the

decision variables (extreme point) and an unbiased estimate for the optimal solution Z*.
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But, this method requires many samples from the simulation and only considers the

means and not the distributions around the means.

7.3 Ranking and Selection of Decision Variable Sets

Law and Kelton present ranking and selection procedures that offers an

alternative to the brute force method presented above (8:596). The analyst may be

interested in three selection approaches. First, the procedure is based on seiecting the

best of the k decision variable settings. Second, as an initial screening procedure,

selecting a subset of size m that contains the best of the k decision variable settings.

Third, selecting the best m alternatives from the k decision variable settings, this

approach would offer greater flexibility for the decision maker by providing more

options.

7.3.1 Selecting the Best of k Systems

Previously, 2* represented the estimated optimal solution from the finearprogran

Now, let the Zij's represent point estimates from the simufationt for the jth replication of

the ith decision variable set and [i = E(Zij). This approach assumes the Zij's are

independent (8:596). Law and Kelton define a method of finding the smallest expected

response; this research focuses on the largest expected response defining ttito be the fth

largest of the i's and

il > lAi2 > • > - !ik(11)

we want P(CS) > P* (12)

provided gi1 - k > d* (13)

and the minimal CS probability is P* > 1/k (14)

where

CS = correct solution

d* > 0 defines the "indifference" specified by the analyst.

Law and Kelton present a procedure originally developed by Dudewicz and Dalal (1975)
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[Involving] "two-stage" sampling from each of the k systems; In the first stage
we make a fixed number of replications of each system, then use the resulting
variance estimates to determine how many more replications from each system
are necessary in a second stage of sampling in order to reach a decision. It must
be assumed that the [Zij's] are normally distributed, but (importantly) we need not

2assume that the values of o2 = Var(Zij) are known; nor do we have to assume that

2the a. are the same for different i's. (Assuming known or equal variances is very

unrealistic when simulating real systems.) The procedure's performance should be
robust to departures from the normality assumption, especially if the [Zij's] are
averages. (8:596)

Law and Kelton define the first-stage sampling with I0 > 2 replications of each k

decision variable sets and define:

1t0

SZij
= (15)

Zi(1)(no)  o 

(n

no7 [Z..-Z(1(0]

j=l2 (6
Si (10) -- - (16)

for i = 1, 2, ... , k. N is total sample size needed for system i

rh2 S2 1
[hl Si(no) "1 ]1

Ni= maxtn 0 + 1,1 2 (17)
I (d*)2

where [xl is the smallest integer greater than or equal to the real number x, and hi

(which depends on k, P*, and no) is a constant that can be obtained from Table 1
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(Appendix C). Next, make Ni - no more replications of system i (i = 1,2, .. k) and

solve for the second-stage sample means by

Ni

F, Zij

) j=n0+ 1
Zi(Ni" 0) = Ni - no (18)

Define the weights as

F Ni( (Ni -no) (d*)2Q
Wi 1 = 'Lll+ 1- OI1i - 2 2 (19)Ni [ 170 hi S2(no) )j

and Wi2 = 1 - Wil, for i = 1,2, ... ,k. Also, define the weighted sample means as

Zi(Ni) = Wil -i(1)0) + Wi2 Zi((Ni - no) (20)

and select the decision variable setting (extreme point) with the largest Zi(Ni) (8:597).

Law and Kelton conclude:

The choice of P* and d* depend on the analyst's goals and the particular system
under study; specifying them might be tempered by the computing cost of

obtaining a large Ni associated with a large P* or small d*. However, choosing
110 is more troublesome, and we can only say, on the basis of our experiments and

various statements in the literature, that rn0 be at least 20. (8: 597-598)

7.3.2 Selecting a Subset m Containing the Best of k Decision Variables

There may be cases where EP (the set of sampled extreme points)l is large and

the above approach would require too much computer time and effort; here an initial

screening procedure could be useful.
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Now consider selecting a subset of size m containing the best from k decision

variable settings (i.e., EPi where i = 1, 2, .... , k) where m is specified bythe analyst.

This is that same situation as above except "correct selection (CS) is defined to mean that

the subset of size m that is selected contains a system [extreme point] with mean til and

we want P(CS) P" provided that -il - ti2 > d*; here we must have 1 < m < k -1, P* >

m/k, and d*>O (8:599)." Also, replace hl by h2 that depends not only on k, P*, and no,

but also on m (see Table 2 Appendix C).

Then we make Ni - no more replications, from the second stage means

Zi()(Ni - no), weights Wil and Wi2, and weighted sample means Zi(Ni),
[exactly as before]. Finally, we define the selected subset to consist of the m

systems corresponding to the i smallest values of the Zi(Ni)'s. (8:599)

As m increases "considerably fewer replications" are required than when m = 1 (8:600).

7.3.2 Selecting the Best m of k Decision Variable Settings

Using the in best of k decision variable settings approach, the analyst can provide

the best m alternatives to the decision maker giving him a broader base for a decision.

This approach is very similar to the above two approaches except the subset of size m

equals the largest expected responses gi l , i 2 , .... mnir (this set is not ranked ordered).

Here P(CS) _ P* provided gin - R d*. Also, P* > m!(k-m)!/k! and replace h2 by

h3 (see Table 3 Appendix C).

7.4 Histogram Comparison

The ranking and selection procedure above presents a method of evaluating the

expected value of different decision variable settings, but choosing the "best" solution

often involves more than just identifying the largest expected value.

Histograms are plotted using all simulation samples from the best in alternatives.

The histogram can the aid the decision maker by visually representing the possible
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realizations of the process at given settings. Two important advantages are: avoiding risk

by choosing the smallest variance, and illustrating nearly equivalent alternatives and

allowing the decision maker to consider factors not captured by the model. For instance,

figure 11 illustrates possible histograms from the top three decision variable sets.

Figure 11 Histogram Comparison

It is not clear which is the best alternative. The top plot has the highest mean, but a risk

averse decision maker may choose the second option to avoid the possible down side of

the first option. In either case, a visual representation presents the decision maker with a

broader knowledge base from which to make a decision.
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8 Phase III Investigation Results

A ranking and selection procedure was used to analyze the extreme points

sampled by the double Box-Behnken type design when the standard error equals 3.25.

The sampled extreme points are in Table 11, and include the actual Z* at each extreme

point which, of course, would not be known in practice.

Extreme Point xl x2 x3 x4 True Z*

1 4 0 0.666667 6.6666667 215.333
2 1 11 0 0 212
3 2 10 0 0 210
4 2 8 0 2 216
5 8 0 2 0 166
6 0 8 2 0 182
7 0 0 4.666667 2.666667 147.333
8 0 0 6 0 118

Table 11. Unique Extreme Points Sampled

Because there are only eight extreme points no screening is needed, and the

ranking and selection of the best m out of k alternatives was used. Lets assume the best

three alternatives are desired at a 90% confidence level (i.e., h3 = 3.532) with d= 4.

Where d is the minimum separation between extreme point sample means desired, and

like the confidence level is chosen by the analyst. Knowing the true separation between

Z* it is clear d is too high, here it is chosen a little high to illustrate the robustness of the

process. There will always be a trade off between the confidence level desired, the value

of d, and the number of samples (Ni) required at each extreme point. As the confidence

level increases, or the value of d decreases, the number of samples required increases.

Table 12 correctly identifies the top three alternatives, recall that the order of the three

alternatives is not guaranteed. In this case, the decision maker would choose between

extreme points one, two and four.

40



.2
- Sz(2 0) Ni  ZWil Wi2 i(Ni)

1 217.876 154.707 121 217.135 .186 .814 217.273
2 206.517 118.576 93 212.157 .247 .753 210.767
3 209.244 122.273 96 208.107 .242 .758 208.837
4 214.886 254.121 199 215.379 .12 .88 215.32
5 167.00 182.121 142 164.912 .142 .858 165.209
6 186.924 112.299 88 179.201 .257 .743 181.186
7 145.86 165.889 130 146.701 .18 .82 146.55
8 113.123 1,35.033 106 116.445 .221 .779 115.791

Table 12. Selecting the Three (w/ d=4) Best of the Eight Extreme Points

Table 13 shows a case where a different approach is taken. The initial estimates of the

means Zi 1 (20) show there appears to be a natural division between the first four extreme

points and the last four. Because of this natural division it might be advantageous to

choose the best four extreme points out of the set of eight. In this case, at a 90%

confidence level h3 equals 3.571 and d is again chosen equal to four.

i - S220 i -WIi()zil(20)  Zi2(Ni-20) i Wi2

1 217.876 154.707 124 216.534 .189 .811 216.788
2 206.517 118.576 95 212.193 .24 .76 210.831
3 209.244 122.273 98 208.554 .234 .766 208.716
4 214.886 254.121 203 215.129 .133 .887 215.102
5 167.00 182.121 146 164.80 .163 .837 165.159
6 186.924 112.299 90 179.182 .253 .747 181.143
7 145.86 165.889 134 146.854 .178 .822 146.677
8 113.123 135.033 108 116.624 .208 .792 115.895

Table 13. Selecting the Four (w/ d=4) Best of the Eight Extreme Points

Table 13 correctly identifies to top four alternatives. Even overestimating d, this method

proved effective. Table 14 illustrates another approach, the Zil(20) seem to show two

distinct groups. This can be exploited, instead of d=4 let us choose d=6, this is done with

the goal of separating the groups and then getting a feel for the rankings. This approach

might be taken if multiple replications are difficult to make (note the decrease in Ni from
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Table 13 to Table 14). Also, this approach illustrates another advantage of this

technique, using the ranking and selection procedure it is possible to identify the top n

competing alternatives. In other words, this helps identify the number of roughly

equivalent alternatives (i.e., the value for m).

i 2
zil(20)  S (20) Ni Zi2 (Ni-20) Wil Wi2 2i(Ni)

1 217.876 154.707 55 215.661 .393 .607 216.531
2 206.517 118.576 43 213.92 .542 .458 209.908
3 209.244 122.273 44 208.454 .517 .483 208.863
4 214.886 254.121 91 215.833 .263 .737 215.583
5 167.00 182.121 65 162.854 .348 .652 164.296
6 186.924 112.299 40 179.464 .537 .463 183.472
7 145.86 165.889 59 148.435 .369 .631 147.484
8 113.123 135.033 48 115.913 .446 .554 114.669

Table 14. Selecting the Four (w/ d=6) Best of the Eight Extreme Points

After choosing a ranking and selection method, the confidence level, and d then this

research recommends using the data obtained through the procedure to create a

histogram. The histogram is a way to aid the decision maker. In this example, all the

actual variances arc equal, but this method has its strengths when the variances are

different. Figure 12 illustrates the histograms of the top four alternatives, the dotted

vertical lines represent Zi(Ni) for each alternative. An alternative to presenting a

histogram of the data is the plot the nomal probability curve defined by the estimated

mean and variance.
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Figure 12 Sample Case Histogram Comparison

At this point the choice is up to the decision maker.
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9 Conclusions and Recommendations

9.1 Introduction

This research presents a superior method to the traditional approach of estimating

a response surface and then using it as the objective function of a linear program. Over

multiple realizations the traditional approach will overestimate the true mean response,

and it is unlikely that the "true" optimal extreme point will be chosen. Small variance in

the estimates of the response surface coefficients can lead to large variance in the

estimation of Z* and a low probability of choosing the correct optimal extreme point

EP*. By using the screening procedure this general procedure may become practical for

general application.

9.2 Variance Reduction

The results of this research clearly lead to the conclusion that some kind of

variance reduction techniques applied to the simulation would greatly benefit the analyst.

If the analyst chooses to use the traditional method of solving this kind of problem (with

only one realization of the process) variance reduction procedures appear to be critical if

he hopes to have any confidence in the solution. If the analyst chooses to follow the

approach recommended in this research variance reduction will play a key role in

minimizing the number of extreme points sampled and aiding in the comparison between

competing extreme points.

Please refer to Law and Kelton (1991) for explanation of how to apply variance

reduction techniques. Some techniques that may be appropriate here are: multiple

replications, common random numbers, antithetic random numbers, and control variates.
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9.3 Three Step Process

As stated earlier, the purpose of this research was to investigate the traditional

approach of solving constrained optimization problems through simulation and linear

programming. Problems have been identified and a possible solution offered. Figure 13

illustrates a standard estimation of a response surface and its variance-covariance matrix.

(Step 1)

Simulation

Design

RSM

r3& (X X)

Figure 13 Step 1

Figure 14 illustrates a Monte Carlo or design procedure (using screening) to sample the

objective function with the goal of including the tne optimal extreme point (EP*) in the

sampled set. It appears the superior choice is to uses the screening procedure and then

sample from the objective function using a triple 5-level Box-Behnken type design.
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(Step 2)
A A

Monte Carlo or Design
Sampling with Screening

C & C XX

Max C'x
Ax<b

ID Extreme Points

Figure 14 Step 2

Figure 15 illustrates how to identify the "true" optimal extreme point EP* (with a given

probability) and present the information to a decision maker in both numeric and visual

form.
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(Step 3)

Sample Simulation
@ Extreme Points using

Ranking and Selection
Procedures

Plot Histograms of
Best m Decision

Variable Sets

[Make Decision

Figure 15 Step 3

9.4 Further Research Areas

This research could be continued in the following areas:

1. Investigate alternative sampling designs with the goal of decreasing the number of

design points and increasing the "true" optimal extreme point sampling accuracy.

2. Investigate an alternative structure to decrease the number of design points in the

triple modified 5-level Box-Behnken design.

3. Investigate a method to determine a priorithe number of samples that must be taken to

achieve a given confidence level.

4. Investigate an alternative to Law and Kelton's ranking and selection procedure

presented in this research.
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Appendix A: Illustration of Three Step Process
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(Step 1)

Simulation

Design

RSMI I

j3&u(X X)

(Step 2)
A AC=1

Monte Carlo or Design
Sampling with Screening

A T 1

Max Cx
Ax<b

ID Extreme Points

49



C(Step 3]

Sample Simulation
@ Extreme Points using

Ranking and Selection
Procedures

Plot Histograms of
Best m Decision
Variable Sets

Make Decision

50



Appendix C: Box Behnken Type Designs

-1 -1 0 0
1 -1 0 0
-1 1 0 0
1 1 0 0

0 0 -1 -1
o 0 1 -1
o o -1 1
o 0 1 1
-1 0 0 -1
1 0 0 -1
-1 0 0 1
1 0 0 1
o -1 -1 0
o 1 -1 0
o -1 1 0
o 1 1 0
-1 0 -1 0
1 0 -1 0

-1 0 1 0
1 0 1 0
o -1 0 -1
o 1 0 -1
o -1 0 1
o 1 0 1
0 0 0 0

Single Box-Behniken Design (four variables)
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-1.0 -0.5 0.0 0.0
1.0 -0.5 0.0 0.0

-1.0 0.5 0.0 0.0
1.0 0.5 0.0 0.0
0.0 0.0 -1.0 -0.5
0.0 0.0 1.0 -0.5
0.0 0.0 -1.0 0.5
0.0 0.0 1.0 0.5

-1.0 0.0 0.0 -0.5
1.0 0.0 0.0 -0.5

-1.0 0.0 0.0 0.5
1.0 0.0 0.0 0.5
0.0 -1.0 -0.5 0.0
0.0 1.0 -0.5 0.0
0.0 -1.0 0.5 0.0
0.0 1.0 0.5 0.0

-1.0 0.0 -0.5 0.0
1.0 0.0 -0.5 0.0
-1.0 0.0 0.5 0.0
1.0 0.0 0.5 0.0
0.0 -1.0 0.0 -0.5
0.0 1.0 0.0 -0.5
0.0 -1.0 0.0 0.5
0.0 1.0 0.0 0.5
-0.5 -1.0 0.0 0.0
0.5 -1.0 0.0 0.0
-0.5 1.0 0.0 0.0
0.5 1.0 0.0 0.0
0.0 0.0 -0.5 -1.0
0.0 0.0 0.5 -1.0
0.0 0.0 -0.5 1.0
0.0 0.0 0.5 1.0

-0.5 0.0 0.0 -1.0
0.5 0.0 0.0 -1.0
-0.5 0.0 0.0 1.0
0.5 0.0 0.0 1.0
0.0 -0.5 -1.0 0.0
0.0 0.5 -1.0 0.0
0.0 -0.5 1.0 0.0
0.0 0.5 1.0 0.0
-0.5 0.0 -1.0 0.0
0.5 0.0 -1.0 0.0
-0.5 0.0 1.0 0.0
0.5 0.0 1.0 0.0
0.0 -0.5 0.0 -1.0
0.0 0.5 0.0 -1.0
0.0 -0.5 0.0 1.0
0.0 0.5 0.0 1.0
0.0 0.0 0.0 0.0

Box-Behnken Type Design with 5 levels (four variables)
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Appendix C: Constants for the Selection Procedures

P * no k =2 k =3 k =4 k=S5 k =6 k =7 k =8 k =9 k =10
0.90 20 1.896 2.342 2.583 2.747 2.870 2.969 3.051 3.121 3.182
0.90 40 1.852 2.283 2.514 2.669 2.758 2.878 2.954 3.019 3.076
0.95 20 2.453 2.872 3.101 3.258 3.377 3.472 3.551 3.619 3.679
0.95 40 2.386 2.786 3.003 3.150 3.260 3.349 3.422 3.484 3.539

(8:606)

Table 15. Value for hl
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(for m =1, use Table 1)
m k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

P*=.90 n0 =20

2 1.137 1.601 1.860 2.039 2.174 2.282 2.373 2.450
3 0.782 1.243 1.507 1.690 1.830 1.943 2.038
4 0.556 1.012 1.276 1.461 1.603 1.718
5 0.392 0.843 1.105 1.291 1.434
6 0.265 0.711 0.971 1.156
7 0.162 0.603 0.861
8 0.075 0.512
9 N/A

P*=.9o n0 =40

2 1.114 1.570 1.825 1.999 2.131 2.237 2.324 2.399
3 0.763 1.219 1.479 1.660 1.798 1.909 2.002
4 0.541 0.991 1.251 1.434 1.575 1.688
5 0.381 0.824 1.083 1.266 1.408
6 0.257 0.693 0.950 1.133
7 0.156 0.587 0.841
8 0.072 0.497
9 N/A

P*=.95 no=20
2 1.631 2.071 2.321 2.494 2.625 2.731 2.819 2.894
3 1.256 1.697 1.952 2.131 2.267 2.378 2.470
4 1.021 1.458 1.714 1.894 2.033 2.146
5 0.852 1.284 1.539 1.720 1.860
6 0.721 1.149 1.402 1.583
7 0.615 1.038 1.290
8 0.526 0.945
9 0.449

P *=. 95 n=40

2 1.591 2.023 2.267 2.435 2.563 2.665 2.750 2.823
3 1.222 1.656 1.907 2.082 2.217 2.325 2.415
4 0.990 1.420 1.672 1.850 1.987 2.098
5 0.824 1.248 1.499 1.678 1.816
6 0.695 1.114 1.363 1.541
7 0.591 1.004 1.252
8 0.505 0.913
9 0.430

(8:606)
Table 16. Value for h2
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(for m= 1, use Table 1)
m k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

P*90 n0=2 0

2 2.342 2.779 3.016 3.177 3.299 3.396 3.477 3.546
3 2.583 3.016 3.251 3.411 3.532 3.629 3.709
4 2.747 3.177 3.411 3.571 3.691 3.787
5 2.870 3.299 3.532 3.691 3.811
6 2.969 3.396 3.629 3.709
7 3.051 3.477 3.709
8 3.121 3.546
9 3.182

p*=.90 no=40

2 2.283 2.703 2.928 3.081 3.195 3.285 3.360 3.424
3 2.514 2.928 3.151 3.302 3.415 3.505 3.579
4 2.669 3.081 3.302 3.451 3.564 3.653
5 2.785 3.195 3.415 3.564 3.675
6 2.878 3.285 3.505 3.653
7 2.954 3.360 3.579
8 3.019 3.424
9 3.076

p*.95 no=20

2 2.872 3.282 3.507 3.662 3.779 3.873 3.952 4.019
3 3.101 3.507 3.731 3.885 4.001 4.094 4.172
4 3.258 3.662 3.885 4.037 4.153 4.246
5 3.377 3.779 4.001 4.153 4.269
6 3.472 3.873 4.094 4.246
7 3.551 3.952 4.172
8 3.619 4.019
9 3.679

p*.95 no=4 0

2 2.786 3.175 3.386 3.530 3.639 3.725 3.797 3.858
3 3.003 3.386 3.595 3.738 3.845 3.931 4.002
4 3.150 3.530 3.738 3.879 3.986 4.071
5 3.260 3.639 3.845 3.986 4.092
6 3.349 3.725 3.931 4.071
7 3.422 3.797 4.002
8 3.484 3.858
9 3.539

(8:606)
Table 17. Value for h3
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Appendix D: Main Computer Program Listing
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PROGRAM RSMLP

C Written by ILT R. Garrison Harvey March 1, 1992
C This program investigates the how the noise in the estimation of
C a response surface impacts the estimation of the optimal solution
C when the response surface is used as an objective function of a
linear
C program.
C
C This program is a research tool, but with the elimination of
C unneeded procedures could be used in practice.
C
C This program has the following main loops:
C
C Noise loop (NL times)
C Response surface (obj. function) sampling (DRUNS times)
C Sampling of the objective function of the LP to
C identify the "true" optimal extreme point (RUNS times)
C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCC VARIABLES FOR THE LP PORTION CCCCCCCCCCCCCC

INTEGER LDA, M, NVAR, RUNS, BCDIM, EPDIM
PARAMETER (M=3,NVAR=4,LDA=M, RUNS=149,BCDIM=20,EPDIM=20)
INTEGER DP, DRUNS, TRUNS, NVARY,NINTNLSTEP
PARAMETER (DP=16, DRUNS=000, TRUNS=RUNS*DRUNS, NVARY=NVAR+l)
PARAMETER (NINT=20, NL=5, STEP=50)

C !!!! When changing the parameters remember to change the subroutines

INTEGER IRTYPE(M), NOUT
REAL A(M,NVAR), B(M), C(NVAR),OBJTRUE(NVAR), DSOL(M)
REAL XLB(NVAR), XSOL(NVAR), XUB(NVAR), OBJ,CONSTANT

REAL XSOLT(NVAR), OPTT

EXTERNAL DLPRS, SSCAL, UMACH

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCC VARIABLES FOR THE MULTIVARIATE NORMAL GENERATION CCC

INTEGER IRANK, ISEED
REAL R(RUNS,NVAR),RSIG(NVAR,NVAR)

EXTERNAL CHFAC, RNMVN, RNSET, UVSTA, RNNOA,RNNOF

EXTERNAL CORVC, WRRRN, RCOV,HHSTP, OWFRQ, PROBP,WROPT

EXTERNAL SCOLR, LINRG,MRRRR

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCC VARIABLES FOR THE MONTE CARLO SIMULATION CCCCCCCCC

INTEGER RUN,EP, BC,EPCNT(EPDIM),BCCNT(BCDIM),SCREEN

INTEGER J,K,N,I, SIM, FailSamp, SEP,S,SS,SSS, SET

INTEGER CONSTRAINTS(3)
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INTEGER XBASIC(NL,BCDIM,M)

REAL NOISEMULT(NL), OPTIMUM(TRUNS, 1)

REAL BASIS (BCDIM, NVAR), OPTBASIS (BCDIM, TRUNS)

REAL EXTPT(EPDIM, NVAR), OPTEP (EPDIM, TRUNS)
REAL TESTU, TESTL, TOL, TEMP, AVE, MIN, MAX, S2

REAL OPTDR(DRUNS)

REAL DESIGN(DP,NVAR+1),Y(DP,1),BHAT(NVARY,1) ,VARCOV(NVAR,NVAR)

REAL SEXTPT(EPDIM,NVAR), box(STEP,NVAR), SDEV(3)

REAL BA-SET(NL,BCDIM,M,NVAR),BA(M,NVAR),CBA(NVAR)

REAL CB(M), BMAT(MM),B _TEST(M)

COMMON OPTBASIS, OPTEP, BCCNT, BASIS, EPCNT, EXTPT, XSOL, OBJ

CCCCCcccCcCccCCCCCCCcccccccCCCCcccCcCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCC Definitions cCCCCCCCCCCCCCCCCCCCCC

CALL UMACHl (2, NOUT)

DATA XLB/NVAR*0 .0/

DATA XUB/NVAR* -1. E30/

DATA A/ 1., 2., -1.,
+ 3*1.,
+ 2., -1., 1.,

+ 1.,1.,2./
DATA B/12., 14., 10./

DATA OBJTRUE/15.,17.,18.,20./

CONSTANT - 10.0

DATA IRTYPE/1, 1, 1/

C DEFINES TilE TYPE OF CONSTRAINTS
DATA CONSTRAINTS /3, 0, 0/

C SAMPLING - 1 <> MONTE CARLO -2 <> DESIGN

SAMPLING -2

C Define standard deviation multipliers
SDEV(l) -1.5

SDEV(2) -2.75

SDEV(3) - 4.0

C SCREEN =1 <> YES, SCREENING, =0 <> NO SCREENING

SCREEN = 1

NOISEMULT(1) = 1.0

NOISEMULT(2) = 5.0
NOISEMULT(3) - 9.0
NOISEMULT(4) = 13.0
NOISEMULT(5) =17.0
TOL = 0.00001

CCCCCCC FULL FACTORIAL WITH 4 VARIABLES CCCCCCCCCCCCCCCC

DATA DESIGN/16*1.,
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CCCCCCC HALF FACTORIAL WITH 4 VARIABLES BLOCKING I=1234 CCC
C DATA DESIGN/8*1,

CCCCCCC FULL FACTORIAL WITH 5 VARIABLES CCCCCCCCCCCCCCCC
C DATA DESIGN/32*i.,
C 1,,-.1-.,.-.1, ,1,i,,-.1,i,.
C +-.1,1,.-.i,14,14,1,.-.1,1,.

CCCCCCC FULL FACTORIAL WITH 6 VARIABLES CCCCCCCCCCCCCCCC
C DATA DESIGN/64*1.,
C +-.1,1,.-.1,1,.-.1,i,.-.i,1,.
C +-.1,1,.-.1,i,.-.1,i,.-.1,i,.

C -ii,.,,-.-.i1.i.-.i,.-.-.i,.
C +-1,-.ii.-,-.i,.-,-.i,.i.-.ii.

C + 4*-i ,4*i.,4*-i.,4*1.,4*-1.,4*i.,4*-1.,4*1.,

C + i6*-l.,16*i.,16*-l.,16*1.,
C 432*-l.,32*i./

C MODIFIED five level BOX-BENKIN DESIGN FOR 4 VARS
DATA BOX/-.,.,-.,i., 4*0.0,

" -. 5,.5,-.5,.5, 4*0.0,
" -. 5,.5,-.5,.5, 4*0.0, -. ,5-5.,5*0.0,

+ -. 5,-.5-.5,.5,50.0

59



+ 4*0.0,-.5,-.5,.5,.5,-.5,-.5,.5,.5,8*0.0,

+ -5-5.,500

C MODIFIED three level BOX-BENKIN DESIGN FOR 5 VARS
C DATA BOX/-l.,l.-.1008.,-l.,,-.,., 0.0*12,
C + 1,.-.l,~0.0*8,
C

C + -. ,l,.1,.*,1,.-.1,.*2

C

C +004-.,.-.,.004-.,i l,.008

C

C

CCCCCCCCCCCC SOLVE LP FOR TRUE ANSWER CCCCCCCCCCCCCCCCCC

DO 2 K -1, NVAR

C(K) -OBJTRUE(K)

2 CONTINUE

C TO MAXIMIZE, C MUST BE MULTIPLIED BY -1

CALL SSCAL (NVAR, -1.OEO, C, 1)

C SET BOUNDS ON X VARIABLES
do 3 i -l,nvar

xib(i) - 0.0

xub(i) -1.0E30
3 continue

CALL DLPRS (M,NVAR,A,M,B,B,C,IRTYPE,XLB,XUB,
+ OPTT, XSOLT, DSOL)

C AFTER RUN DSOL MUST BE MULTIPLIED BY -1 TO GET TRUE MAX

CALL SSCAL (M, -l.OEO, DSOL, 1)

C ADDING THE CONSTANT TERM

OPTT -- OPTT + CONSTANT

CCCCCCCCCCCCCCCCCC END OF TRUE ANSWER FOR LP CCCCCCCCCCCCCCC

CCCCCC INITIALIZE SEED OF RANDOM NUM GENERATOR CCCCCCCCCCCCC

ISEED= 1735927

CALL RNSET (ISEED)

OPEN (UNIT = 20, FILE= 'final.out', STATUS ='NEW')

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
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CCCCCCCCCCCCCCCC Monte Carlo Simulation CCCCCCCCCCCCCCCCCCCC

CCcccccccccCCCCCCCCCCCccCCccCCCCCcccCCCCCCcCCcCCCCcccCCCCcC

CCCCCCCCCCCCCCCCCCCC NOISE LOOP CCCCCCCCCCCCCCCCCCCCCCCCCCCC

DO 900 N -l,NL

write(*,*) 'Noise level ',N

FailSamp =0

EP -1

BC 1
DO 4 K =l,EPDIM

EPCNT(K) =0

4 CONTINUE

DO 6 K - ,BCDIM

BCCNT(K) -0

6 CONTINUE

CCCCCCCCCCCCCCCCCC OBJECTIVE FUNCTION GENERATION LOOP CCCCCCCCCC

DO 500 SIM-1,DRUNS

DO 20 J-l,DP

Y(01J~) - 0.0

DO 10 K-2,NVAR+l

Y(J,l)- Y(J,l)+DESIGN(J,K)*OBJTRUE(K-l)

10 CONTINUE

Y(J, l)-Y(J, l)+NOISEMULT(N) *RNNOF( +CONSTANT

20 CONTINUE

CAL.L REGRESSION (DESIGN, Y, T3HAT, VARCOV)

CCCCCCCCCCCCCC SINGLE SAMPLE WITH! NO NOISE CCCCCCCCCCCCCCCCCCCCC

DO 80 K - 1, NVAR

0(K) -BIIAT(K+11,1)
80 CONTINUE

C TO MAXIMIZE, C MUST BE MULTIPLIED BY -1

CALL SSCAL (NVAR, -1.OEO, C, 1)

C Solve LP

CALL DLPRS (M,NVAR,A,M,B,B,C,IRTYPE,XLB,XUB,

+ OBJ, XSOL, DSOL)

C AFTER RUN DSOL MUST BE MULTIPLIED BY -1 TO GET TRUE MAX

CALL SSCAL (M, -l.OEO, DSOLI 1)

C ADDING THE CONSTANT TERM

OBJ = -OBJ + Bhat(l,l)

CCCCCCCCCCCC END SINGLE SAMPLE WITH NO NOISE CCCCCCCCCCCCCCCCCCC
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C OBTAIN THE CHOLESKY FACTORIZATION (GEN OF MULTIVARIATE DIST)

CALL CHFAC (NVAR,VARCOV,NVAR,0.00001,IRANK,RSIG,NVAR)

CALL RNMVN (RUNS, NVAR, RSIG, NVAR, R, RUNS)

C RNMVN (NR, K, RSIG, LDRSIG, R, LDR)

C NR - # RANDOM MULTIVARIATE NORMAL VECTORS TO GENERATE (INPUT)

C K - (EQ NVAR) LENGTH OF THE MULTIVARIATE NORMAL VECTOR (INPUT)

C RSIG - UPPER TRIANG MATRIX, K BY K, CONTAINING THE CHOLESKY FACTOR

FOR THE

C VARIANCE-COVARIANCE MATRIX (INPUT)

C LDRSIG -(RUNS) LEADING DIM OF RSIG EXACTLY AS SPECIFIED IN THE

CALLING

C PROGRAM

C (INPUT)
C R - NR BY K MATRIX CONTAINING THE RANDOM VECTOR IN ITS ROWS

C LDR (RUNS) - LEADING DIM OF R EXACTLY AS SPECIFIED IN THE DIMENSION

C STATEMENT OF THE CALLING PROGRAM (INPUT)

CCCCCCCCCCCCCCCC OBJECTIVE FUNCTION SAMPLING LOOP CCCCCCCCCCC

OPTDR(SIM)-O.0
SEP - 1

SSS -0

SET - 0
DO 390 RUN - 1, RUNS

DO 100 K = 1, NVAR
IF (SAMPLING.EQ.1) THEN
C(K) = BIIAT(K+1,1) + R(RUN,K)

ELSE

SS = RUN - SSS*STEP

S SSS +1
SSS-INT(RUN/STEP)

C(K)=BHIAT(K+1,1)+

+ BOX(SS,K)*SDEV(S)*SQRT(VARCOV(K,K))

ENDIF

100 CONTINUE

IF (SCREEN.EQ.1) GOTO 120

C TO MAXIMIZE, C MUST BE MULTIPLIED BY -1

CALL SSCAL (NVAR, -1.OEO, C, 1)

C Solve LP

CALL DLPRS (M,NVAR,A,M,B,B,C,IRTYPE,XLB,XUB,
+ OBJ,XSOL,DSOL)

C AFTER RUN DSOL MUST BE MULTIPLIED BY -1 TO GET TRUE MAX

CALL SSCAL (M, -1.OEO, DSOL, 1)

C ADDING THE CONSTANT TERM

OBJ = -OBJ + Bhat(l,l)
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C DLPRS (M, NVAR, A, LDA, BL, BU, C, IRTYPE, XLB, XUB, OBJ, XSOL,

DSOL)

C M - # OF CONSTRAINTS (INPUT)

C NVAR - 4 OF VARIABLES (INPUT)

C A - MATRIX OF DIM m BY NVAR CONTAINING THE COEFFICIENTS OF THE M

CONST.

C (INPUT)

C LDA - LEADING DIM OF A EXACTLY AS SPECIFIED IN THE DIM STATEMENT

(INPUT)

C BL, BU - UPPER & LOWER BOUNDS VECTOR ENGTH M (INPUT)

C C - VECTOR LENGTH NVAR - COEFF. OF OBJ FUNCT (INPUT)

C IRTYPE - VECTOR LENGTH M - TYPE OF CONSTRAINTS EXCLUSIVE OF SIMPLE

BOUNDS

C WHERE IRTYPE(I)- 0,1,2,3 INDICATES .EQ., .LE., .GE., AND RANGE

CONSTRAINTS

C RESPECTIVILY

C XLB,XUB - VECTORS LENGTH NVAR LOWER & UPPER BOUNDS OF VARIABLES

C IF NO BOUNDS THEN SET XLB - 1.0E30, OR XUB - -l.0E30

C DEPENDING WHICH IS UNBND

C OBJ - VALUE OF OBJECTIVE FUNCTION (OUTPUT)

C XSOL - VECTOR LENGTH NVAR - PRIMAL SLOUTION (OUPUT)

C DSOL - VECTOR LENGTH M - DUAL SOLUTION (OUTPUT)

GOTO 155

C selection procedure to follow

120 IF (RUN.GT.1) THEN
DO 135 J= 1,SET

C DEFINE BASIC COEFFICIENTS

DO 121 I-1,M

TEMP - XBASIC(N,J,I)

IF (TEMP.EQ.0) THEN

CB(I) = 0.0
ELSE

CB(I) = C(XBASIC(N,J,I))
ENDIF

121 CONTINUE

C CALCULATE Cb*Binv*A VECTOR GIVEN BA = Binv*A
DO 124 K= 1, NVAR

CBA(K) = 0.0
DO 122 I = 1, M

CBA(K)=CBA(K)+CB(I)*BASET(N,J,I,K)

122 CONTINUE

124 CONTINUE

C OPTIMALITY TEST - BRANCH IF NOT OPTIMAL
DO 130 1= 1,NVAR

IF(C(I)-CBA(I).GT.tol) GOTO 134
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130 CONTINUE

C BASIS ALREADY SAMPLED - OPTIMAL CONDITIONS MET, DON'T SAMPLE

C Branch and sample objective function agian

GOTO 390

134 temp-0

135 CONTINUE

ELSE

SET - 0

ENDIF

SET = SET +1

C TO MAXIMIZE, C MUST BE MULTIPLIED BY -1

CALL SSCAL (NVAR, -l.0E0, C, 1)

C Solve LP

CALL DLPRS (M,NVAR,A,M,B,B,CIRTYPE,XLB,XUB,
+ OBJ,XSOL,DSOL)

C AFTER RUN DSOL MUST BE MULTIPLIED BY -1 TO GET TRUE MAX
CALL SSCAL (M, -l.OEO, DSOL, 1)

C ADDING THE CONSTANT TERM

OBJ -"OBJ + Bhat(1,l)

COUNT - 0

DO 137 I = 1, NVAR
IF(XSOL(I).NE.0.0) THEN

COUNT - COUNT+1

XBASIC(N,SET,COUNT) = I

DO 136 J - 1, M
BMAT(J,COUNT) = A(J,I)

136 CONTINUE

ENDIF

137 CONTINUE

IF(COUNT.GT.M) WRITE (*,*) 'ERROR COUNT > M'

C

CCC FOLLWING IS EXECUTED WHEN A BASIC VARIABLE IS NOT A DECISION

VARIABLE CCC

C
IF (COUNT.LT.M) THEN

DO 142 1 = COUNT+l, M
XBASIC(N,SET,I)= 0.0

DO 140 J = 1, M

BMAT(J,I) = 0.0
140 CONTINUE

142 CONTINUE

DO 148 I= 1, M

BTEST(I) = 0.0
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DO 146 J -1, NVAR

BTEST(I)= BTEST(I)+XSOL(J)*A(I,J)

146 CONTINUE

148 CONTINUE

DO 150 I = 1, M

IF ((B _TEST(I)-B(I).NE.0.0).AND.((DSOL(I).LE.TOL)

+ .AND.(DSOL(I).GE.-TOL))) THEN

COUNT=COUNT+ 1
BMAT(I,COUNT) 1

ENDIF

150 CONTINUE
ENDIF

IF (COUNT.GT.M) WRITE (*,*) 'ERROR: TOO MANY B coin DEFINED'

C INVERTING B

CALL LINRG (M, BMAT, M, BMAT, M)

C FINDING Binv*A
CALL MRRRR(M,M,BMAT,M,M,NVAR,A,M,M,NVAR,BA,M)

CCCCCCCC END OF FINDING B WHEN BASIC VAR IS NOT A DECISION VAR

CCCCCCCCCCCC

DO 153 J-1,M

DO 151 I- 1,NVAR
BA-SET(N,SET,J,I) -BA(J,I)

151 CONTINUE

153 CONTINUE

C DEFINE RUNNING STATISTICS

155 OPTDR(SIM) - OPTDR(SIM) + OBJ
OPTIMUM(RUN+ RUNS*(SIM-1),1) - OBJ

CCCCCCCC DEFINE FOR PER SAMPLE TESTING CCCCCCCCCCCCCCCCCCCC

IF (RUN.EQ.1) THEN

DO 157 K -1, NVAR

SEXTPT(1,K) = XSOL(K)

157 CONTINUE

ENDIF

C Define first Extreme pt & Decision Set for each run

IF ((RUN.EQ.1).AND.(SIM.EQ.1)) THEN

BCCNT(1) = 1

OPTBASIS(1,1) = OBJ

OPTEP(1,1) = OBJ

EPCNT(1) =1

DO 158 K =1, NVAR

EXTPT(1,K) = XSOL(K)

BASIS(1,K) = XSOL(K)

158 CONTINUE
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GO TO 390

ENDIF

CCCCCCCCCCCCC TEST COMPARE EXTREME POINTS PER SAMPLE CCCCCC

J = SEP

160 IF (J.GT.O) THEN

DO 170 K 1 1, NVAR

TESTL = XSOL(K) - TOL

TESTU - XSOL(K) + TOL

IF ((SEXTPT(J,K).LT.TESTL).OR.(SEXTPT(J,K).GT.TESTU)) THEN

J- J-1

IF (J.EQ.0) THEN

GO TO 175

ELSE

GO TO 160
ENDIF

ENDIF

170 CONTINUE

GO TO 199

C DEFINE A NEW EXTREME POINT FOR THIS RUN ONLY

175 SEP - SEP +1

DO 180 K - 1,NVAR
SEXTPT(SEP,K) - XSOL(K)

180 CONTINUE

ENDIF

CCCCCCCCCCCCCC TEST TO COMPARE EXTREME POINTS CCCCCCCCCCCC

199 J EP
200 IF (J.GT.O) THEN

DO 250 K - 1, NVAR
TESTL = XSOL(K) - TOL

TESTU - XSOL(K) + TOL

IF ((EXTPT(J,K).LT.TESTL).OR.(EXTPT(J,K).GT.TESTU)) THEN

J= J-1
IF (J.EQ.0) THEN

GO TO 275

ELSE

GO TO 200
ENDIF

ENDIF

250 CONTINUE

CALL ASSIGNEP(J)
J = J -1
GO TO 290

C DEFINE A NEW EXTREME POINT

275 EP = EP +1

CALL ASSIGNEP(EP)

ENDIF
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CCCCCCCC TEST TO COMPARE DECIOSON VAR SET CHANGES CCCCCCCC

290 J =BC

300 DO 350K =1, NVAR

IF ((((BASIS(J,K).LE.TOL).AND.(BASIS(J,K).GE.-TOL))
+ .AND.((XSOL(K).GE.TOL). OR. (XSOL(K) .LE.-TOL)))

+ .OR.(((BASIS(J,K).GE.TOL). OR. (BASIS(J,K) .LE.-TOL)))

+ .AND.((XSOL(K).LE.TOL).AND.(XSOL(K).GE.-TOL))) THEN

GO TO 355

ENDIF

350 CONTINUE

CALL ASSIGNBC (J)

GO TO 390

355 IF (J.LE.1) THEN
BC -BC+l

CALL ASSIGNBC (BC)

ELSE

J -J -1

GO TO 300

ENDIF

390 CONTINUE

CCCCCCCC TEST IF TRUE EXTREME POINT WAS SAMPLED CCCCCCCCCCC

J SEP

400 IF (J.GT.0) THEN

DO 470 K -1, NVAR

TESTL -XSOLT(K) - TOL

TESTU -XSOLT(K) + TOL
IF ((SEXTPT(J,K).LT.TESTL).OR.(SEXTPT(J,K).GT.TESTU)) THEN

J - J-1

IF (J.EQ.0) THEN

GO TO 480
ELSE

GO TO 400

ENDIF

ENDIF

470 CONTINUE

GO TO 500

C DEFINE A NEW EXTREME POINT FOR TIS RUN ONLY

480 FailSamp = FailSamp + 1
ENDIF

500 CONTINUE

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCCCCCCCC END IF FOR MONTE CARLO SIM CCCCCCCCCCCCCCCCC

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCCCCCC CALCULATE RESULTS AND PRINT OUTPUT CCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CALL UMACH(-2,20)

IF ((XLB(l).NE. O.).OR.(XLB(2).NE. 0.)) THEN
WRITE(20,*)'******* WARNING WARNING******'
WRITE (20,*) ' LOWER BOUNDS ON X CORRUPT'
WRITE (20,*) 'XLB = ',XLB

ENDIF

WRITE (20,*) 'NOISE MULTIPLIER (SD) FOR NORMAL NOISE: '

" NOISEMULT(N?

TEMP = NOISE'MULT(N)*(l/real(DP))**.5

WRITE (20,*) 'STANDARD ERROR IS :',TEMP
if (screen.eq.l) WRITE(20,*) 'This is a screening run'
if (sampling.eq.2) write(20,*) 'Using a Design to sample'
WRITE (20,*) '4 Times failed to sample true extreme pt',

" FailSamp
write(20,*) 'Standard deviation mult set =',SDEV
IF (FailSamp.GT.0) then
TEMP - 00*REAL(FailSamp)/real(DRUNS)
WRITE (20,'(A, F7.3)1) '% failures overall:, ', TEMP

ENDIF
WRITE (20,*)'Number of objective Function Samples: ',DRUNS
WRITE (20,*)'Number of Runs per Obj Function: ', RUNS
WRITE (20,*)'Total Number of Points Tested: ',TRUNS
WRITE (20,*)'The True Objective Function:
WRITE (20,*) 'const' ,CONSTANT, '+' ,OBJTRUE
WRITE (20,*) 'Sample Generated objective Function'
WRITE (20,*) BHAT
CALL WRRRN ('Constraint Matrix' ,LDA, NVAR,A,LDA,0)
WRITE (20,*)"
WRITE (20,*) 'The RHS is:, ', B
WRITE (20,*) '*True Optimal Answer: ', OPTT
WRITE (20,*) '*True optimal Extreme Point:'
WRITE (20,*) XSOLT
CALL WRRRN ('Design Matrix' ,DP,NVAR+l,DESIGN,DP,0)
WRITE (20,*) 'Sample response varaible Y:'
WRITE (20,*) Y
CALL WRRRN ('Sample Variance-Covariance Matrix',

+ NVAR,NVAR,VARCOV,NVAR,0)
CALL WRRRN ('Sample Cholesky Factorization Matrix',

+ NVAR, NVAR, RSIG, NVAR, 1)
if (sampling.eq.2) then
CALL WRRRN ('SAMPLING DESING (BOX-BEIINKEN)',

+ step,NVAR,BOX,step,0)
endif
WRITE (20,*)
WRITE (20,*)

+ DECISION VARIABLES

WRITE (20,*) '9 OF DECISION VARIABLE SET CHANGES :',BC
WRITE (20,*) 1
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DO 680 K = 1, BC

WRITE (20,*) ''

WRITE (20,*) 'Decision var set 9 ,

DO 605 J = 1, NVAR

WRITE (20,'(2X,flO.4)') BASIS(K,J)

605 CONTINUE

WRITE (20,*) '# of occurances of this basis: ',BCCNT(K)

if (sampling.eq.1) then
TEMP = (100* REAL(BCCNT(K)))/TRUNS

else

TEMP = (l00*REAL(BCCNT(K)))/DRUNS

ENDIF
WRITE (20,'(A, P7.3)') '% of overall occurance is: ',TEMP

AVE = 0.0

DO 608 J =1, BCCNT(K)
AVE -AVE + OPTBASIS(K,J)

608 CONTINUE

AVE - AVE/REAL(BCCNT(K))

WRITE (20,'(A, F10.4)-) 'AVE. OPTIMUM IS: ',AVE
WRITE (20,'(A,FlO.4)')'Bias opt est (Ave Opt-Tizue Opt): '

+ AVE -OPTT

S2 0.0

MIN =OPTT3ASIS(K,1)

MAX =MIN

Do 620 J -1, BCCNT(K)

S2 -S24- (AVE - OPTBASIS(K,J))**2

IF (MAX.LT.OPTBASIS(K,J)) THEN

MAX = OPTBASIS(K,J)

ENDIF

IF (MIN.GT.OPTBASIS(K,J)) THEN

MIN = OPTBASIS (K,J)

ENDIF

620 CONTINUE

S2 = S2/BCCNT(K)

WRITE (20,'(A, F13.4)') 'The population variance is: ',S2

WRITE (20,'(A, F13.4)') 'The maximum value is: ',max

WRITE (20,'(A, F13.4)') 'The minimum value is: 'min

680 CONTINUE

WRITE (20,*)

WRITE (20,*)

WRITE (20,*)
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+ '!!!!'''''!THE EXTLREMEPOINT!!!!!!''''

WRITE (20,*) 'NUMBER OF EXT POINTS VISITED IS: ', EP
DO 770 K = 1, EP

WRITE (20,*) '

WRITE (20,*) 'Extreme Point # ,K

DO 715 J = 1, NVAR

WRITE (20,'(2X,flO.4)') EXTPT(K, J)
715 CONTINUE

WRITE (20,*) 'ur OF EXT PT VISITS ARE: ',EPCNT(K)
if (sampling.eq.l) then

TEMP =(100* REAL(EPCNT(K)))/TRUNS

else

TEMP = (l00*REAL(EPCNT(K)))/DRUNS

ENDIF

WRITE (20,'(A, F7.3)') '% OF OVERALL IS: ',TEMP

AVE =0.0

Do 718 1 = 1, EPCNT(K)

AVE - AVE + OPTEP(K,J)
718 CONTINUE

AVE = AVE/REAL(EPCNT(K))

WRITE (20,'(A, F10.4)') 'AVE. OPTIMUM IS: ',AVE
WRITE (20,-(A, FlO.4)')'Bias opt est (Ave Opt-True Opt): '

+ AVE - OPTT

C CALCULATE TRUE Z* BASED ON THIS EXTREME POINT
WRITE(20,*)

TEMP = 0.0

DO 719 J=1,NVAR

TEMP = TEMP + OBJTRUE(J)*BASIS(K,J)
719 CONTINUE

TEMP =TEMP + CONSTANT

WRITE (20,1(A, P10.4)') 'TRUE Z* WITH TRUE C IS: ',TEMP
WRITE (20,1(A, F10.4)') 'TRUE BIAS (Z* -Z optimal): '

+ TEMP -OPTT

WRITE (20,'(A, F10.4)')
I'Difference between expected optimal and true',TEMP-AVE

C CALCULATE VARIANCE, MINIMUM & MAXIMUM

S2 =0.0

MIN =OPTEP(K,1)

MAX =MIN

DO 741 J = 1, EPCNT(K)
S2 = S2+ (AVE - OPTEP(K,J))**2

IF (MAX.LT.OPTEP(K,J)) THEN
MAX = OPTEP(K,J)

ENDIP
IF (MIN.GT.OPTEP(K,J)) THEN
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MIN =OPTEP (K,J)

ENDIF

741 CONTINUE

S2 = S2/EPCNT(K)
WRITE (20,'(A, F13.4)') 'The population variance is: ',S2

WRITE (20,1(A, F13.4)') 'The maximum value is: ',max

WRITE (20,'(A, F13.4)') 'The minimum value is: 'min

770 CONTINUE

WRITE (20,*) '

WRITE (20,*) '

WRITE (20,*)

+ OVERALL RESULTSitt

WRITE (20,*) '

AVE = 0.0

DO 800 J = 1, TRUNS

AVE =AVE + OPTIMUM(J,l)

800 CONTINUE

AVE = AVE/TRUNS

WRITE (20,'(A, F10.4)') 'Overall Mean Optimum is: ',AVE
WRITE (20,'(A, FlO.4)')'Overall Bias (Ave Opt-True Opt): '

+ AVE -OPTT

S2 =0.0

MIN =OPTIMUM(1,1)

MAX MIN

DO 820 J = 1, TRUNS

S2 = S2+ (AVE - OPTIMUM(J,1))**2

IF (MAX.LT.OPTIMUM(J,1)) THEN

MAX = OPTIMUM(J,l)

ENDIF

IF (MIN.GT.OPTIMUM(J,1)) THEN
MIN -OPTIMUM(J,l)

ENDIF

820 CONTINUE

S2 = S2/(TRUNS-1)

WRITE (20,'(A, F13.4)') 'The overall sample variance is: ',S2

WRITE (20,'(A, F13.4)') 'The overall maximum value is: ',max

WRITE (20,1(A, F13.4)') 'The overall minimum value is: 'min

WRITE (20,*) '

C

WRITE (20,*)''
WRITE(20,*)'AVE OPTIMAL PER OBJECTIVE FUNCTION'
DO 855 J = 1, DRUNS

OPTDR(J) = OPTDR(J)/RUNS
855 CONTINUE
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AVE =0. 0
DO 856 J 1, DRUNS

AVE AVE + OPTDR(J)
856 CONTINUE

AVE -AVE/DRUNS
WRITE(20,'(A, FlO.4)')'Mean of Mean Opt per obj funct: ',AVE

S2 "0.0

MIN OPTDR(l)
MAX MIN

DO0 e57 j - 1, DRUNS
S2 - S2+ (AVE - OPTDR(J))**2

IF (MAX.LT.OPTDR(J)) THEN
MAX - OPTDR(J)

ENDIr
IF ("IN.GT.OPTDR(J)) THEN
MIN -OPTDR(J)

ENDIE

857 CONTIUUE
S2 - S2/(DRUNS-l)
WRITE (20,'(A, P13.4)') 'The sample var(mean opt): ',S2

WRITE (20,'(A, F13.4)') 'The maximum value is: ,max

WRITE (20,'- 'A, F13.4) ') 'The minimum value is: 'min

WRITE (20,*) -1

DO G60 J - 1,15
WRITE (20,*)'

860 CONTINUE

900 CONTINUE

CLOSE (20)

END

CCCCCCCCCCcccccccccccCCCCCCCCcCCCCCCcCCcCcccCC~CCCCccCCCCCc
CCCCCCCCCCCCCCCCCCCC END PROGRAM CCCCCCCCCCCCCCCCCCCCCCCCCC
cccccc-cccccccccccccccccccccccccccccccccccccccccccccccccccc

STIBROUTIINE ASSIGNI3C (TEMP)

INTEGER TEMP, KF, NVAR, BCDIM, EPDIM,RUNS
PARAMETER (NVAR=4 ,BCDIM=20, EPDIM'-20, RUN', *14 9)
INTEGER DP, DRUNS, TRUNS, NVARY
PARAM4ETER (DP=16, DRUNS=l000, TRUNS=RUNS*DRUNS, NVARY=NVARi-l)

INTEGER EPCNT(EPDIM), BCCNT(BCDIM)
REAL OPT'3ASS1,BDIM, TRUNS)
REAL OPIEP(EPDIM, TRUNS) ,BASIS(BCDIM, NVAR)
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REAL XSOL(NVAR) ,OBJ, EXTPT(EPDIM, NVAR)
COMMON OPTBASIS, OPTEP, BCCNT, BASIS, EPCNT, EXTPT, XSOL, OBJ

C COUNT OCCURANCES OF EACH DECISION SET CHANGE

BCCNT(TEMP) = BCCNT(TEMP) + 1

C DEFINE DECISION SET

OPTBASIS(TEMP,BCCNT(TEMP)) - OBJ
DO 1010 KK - 1, NVAR

!ASIS(TEMP,KK) -XSOL(KK)

1010 CONTINUE

RETURN
END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE ASSIGNEP (TEMP)

INTEGER TEMP, I(I, NVAR, BCDIM, EPDIM,RUNS
PARAMETER (NVAR-4, BCDIM-20, EPDIM-20, RUNS- 149)
TNTEGER DP~, DRUNS, TRUNS, NVARY
PARAMETER (DP=16, DRUNS-1000, TRUNS-RUNS*DRUNS, NVARY-NVAR+-1)

INTEGER EPCNT(EPDIM), BCCNT(BCDIM)
REAL OPTBASIS (BCDIM, TRUNS)
REAL OPTEP( EPDI1, TRUNS) ,BASIS (ICDIM, NVAR)
REAL XSOL(NVAR) ,OBJ, EXTPT(EPDIM, NVAR)
COMMON OPTBASIS, OPTEP, BCCNT, BASIS, EPCNT, EXTPT, XSOL, OBJ

C COUNT OCCURANCES OF EACH EXTREME POINT
EPCNT(TEMP) - EPCNT(TEMP) + 1

C DEFINE EXTREME POINT
OPTEP(TEMP,EPCNT(TEMP)) =OBJ
DO 1020 KK = 1, NVAR

EXTPT(TEMP, KR) =XSOL(KK)
1020 CONTINUE

RETURN
END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE REGRESSION(X, Y,811AT, VARCOV)

INTEGER NVAR, NVARY,DP,KK, JJ
PARAMETER (NVAR=4, NVARY=UVAR+1, DP=16)

REAL X(DP,NVARY),Y(DP,1),BiAT(NVARY,1),VARCOV(NVAR,NVAP)
REAL XX(NVARY,NVARY),C(NVARY,1),INV(NVARY,NVARY)

REAL MSE, EY(DP)

r (TERNAL MXTXF,LSGRR,MXTYF,MRRRR
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C COMPUTE (X'X)

CALL MXTXF(DP,NVARY,X,DP,NVARY,XX,NVARY)

C INVERT THlE MATRIX

CALL LSGRR(NVARY,NVARY,XX,NVARY,0.00001,2,INV,NVARY)

C COMPUTE X'Y

CALL MXTYF(DP,NVARY,X,DP,DP,1,Y,DP,NVARY, 1,C,NVARY)
CALL MRRRR(NVARY, NVARY, INV, NVARY, NVARY, 1,

+ C, NVARY, NVARY,1, BiJAT, NVARY)

C CALCULATE MSE
MSE -0.0

DO 1105 KKI- 1,DP

EY(I(K) - 0.0

DO 1104 J~J -1, NVARY

EY(KK)-E'Y(KK)+X(KK,JJ)*BIIAT(JJ, 1)
1104 CONTINUE

1105 CONTINUE

DO 1107 KR- 1, DP

MSE - MSE + (Y(KK,1)-EY(KK))**2
1107 CONTINUE

MSE - MSE/( DP - NVARY)

C CALCULATE VARIANCE-COVARIANCE MATRIX
DO 1110 K-2,NVARY

DO 1100 J=2,NVARY

VARCOV(J-1, K-1)-INV(J, K)*MSE
1100 CONTINUE~

1110 CONTINUE

RETURN

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC-CCCCC
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Appendix E: Sample Computer Program Output
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NOISE MULTIPLIER (SD) FOR NORMAL NOISE: 1.00000
STANDARD ERROR IS : 0.250000
This is a screening run

Using a Design to sample
# Times failed to sample true extreme pt 0
Standard deviation mult set = 1.50000 2.75000
4.00000
Number of Objective Function Samples: 1000
Number of Runs per Obj Function: 149
Total Number of Points Tested: 149000
The True Objective Function:
const 10.00000+ 15.0000 17.0000 18.0000
20.0000
Sample Generated Objective Function

9.53095 15.0707 17.1.053 17.7075 19.9385

Constraint Matrix
1 2 3 4

1 1 1 2 1
2 2 1 -1 1
3 -1 1 1 2

The RHS is: 12.0000 14.0000 10.00000
*True Optimal Answer: 216.000
*True optimal Extreme Point:

2.00000 8.00000 0. 2.00000

Design Matrix
1 2 3 4 5

1 1 -1 -i -1 -i
2 1 1 -i -1 -1
3 1 -1 1 -i -I
4 1 1 1 -i -1
5) 1 -1 -i 1 -1
6 1 1 -i 1 -i
7 1 -3 1 1 -1
8 1 1 1 1 -1
9 1 -1 -1 -1 1

10 1 1 -1 -1 1
11 1 -1 1 -1 1
12 1 1 1 -1 1
13 1 -1 -1 1 1
14 1 1 -1 1 1
15 1 -1 1 1 1
16 1 1 1 1 1
Sample response varaible Y:

-59.8876 -28.8743 -25.9255 4.72923 -25.1038
4.60987 9.42563

37.7662 -20.6727 9.03708 12.6977 43.4840
14.8402 45.4566

50.3080 80.6046

Sample Variance-Covariance Matrix
1 2 3 4
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1 0.05979 0.00000 0.00000 0.00000
2 0.00000 0.05979 0.00000 0.00000
3 0.00000 0.00000 0.05979 0.00000
4 0.00000 0.00000 0.00000 0.05979

Sample Cholesky Factorization Matrix
1 2 3 4

1 0.2445 0.0000 0.0000 0.0000
2 0.2445 0.0000 0.0000
3 0.2445 0.0000
4 0.2445

SAMPLING DESING (BOX-BEHNKEN)
1 2 3 4

1 -1.0 -0.5 0.0 0.0
2 1.0 -0.5 0.0 0.0
3 -1.0 0.5 0.0 0.0
4 1.0 0.5 0.0 0.0
5 0.0 0.0 -1.0 -0.5
6 0.0 0.0 1.0 -0.5
7 0.0 0.0 -1.0 0.5
8 0.0 0.0 1.0 0.5
9 -1.0 0.0 0.0 -0.5

10 1.0 0.0 0.0 -0.5
11 -1.0 0.0 0.0 0.5
12 1.0 0.0 0.0 0.5
13 0.0 -1.0 -0.5 0.0
14 0.0 1.0 -0.5 0.0
1.5 0.0 -1.0 0.5 0.0
1.6 0.0 1.0 0.5 0.0
.7 -1.0 0.0 -0.5 0.0
18 1.0 0.0 -0.5 0.0
19 -1.0 0.0 0.5 0.0
20 1.0 0.0 0.5 0.0
21 0.0 -1.0 0.0 -0.5
22 0.0 1.0 0.0 -0.5
23 0.0 -1.0 0.0 0.5
24 0.0 1.0 0.0 0.5
25 0.0 0.0 0.0 0.0
26 -0.5 -1.0 0.0 0.0
27 0.5 -1.0 0.0 0.0
28 -0.5 1.0 0.0 0.0
29 0.5 1.0 0.0 0.0
30 0.0 0.0 -0.5 -1.0
31 0.0 0.0 0.5 -1.0
32 0.0 0.0 -0.5 1.0
33 0.0 0.0 0.5 1.0
34 -0.5 0.0 0.0 -1.0
35 0.5 0.0 0.0 -1.0
36 -0.5 0.0 0.0 1.0
37 0.5 0.0 0.0 1.0
38 0.0 -0.5 -1.0 0.0
39 0.0 0.5 -1.0 0.0
40 0.0 -0.5 1.0 0.0
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41 0.0 0.5 1.0 0.0
42 -0.5 0.0 -1.0 0.0
43 0.5 0.0 -1.0 0.0
44 -0.5 0.0 1.0 0.0
45 0.5 0.0 1.0 0.0
46 0.0 -0.5 0.0 -1.0
47 0.0 0.5 0.0 -1.0
48 0.0 -0.5 0.0 1.0
49 0.0 0.5 0.0 1.0
50 0.0 0.0 0.0 0.0

!!!!!!H!!!!!!!!! DECISION VARIABLES !!!!!!!!!!H !!
# OF DECISION VARIABLE SET CHANGES : 2

Decision var set It 1
4.0000
0.0000
0.6667
6.6667

11 of occurances of this basis: 1003
% of overall occurance is: 100.300
AVE. OPTIMUM IS: 215.0843
Bias opt est (Ave Opt-True Opt): -0.9157
The population variance is: 3.7599
The maximum value is: 220.5652
The minimum value is: 209.3271

Decision var set I 2
2.0000
8.0000
0.0000
2.0000

11 of occurances of this basis: 1000
% of overall occurance is: 100.000
AVE. OPTIMUM IS: 215.6013
Bias opt est (Ave Opt-True Opt): -0.3987
The population variance is: 3.8427
The maximum value is: 221.0208
The minimum value is: 209.2253

!1!!!!!!!!!!!!!!!! I THE EXTREME POINT !!!!!!!!!!! ! !
NUMBER OF EXT POINTS VISITED IS: 2

Extreme Point U 1
4.0000
0.0000
0.6667
6.6667

U OF EXT PT VISITS ARE: 1003
% OF OVERALL IS: 100.300
AVE. OPTIMUM IS: 215.0843
Bias opt est (Ave Opt-True Opt): -0.9157
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TRUE Z* WITH TRUE C IS: 215.3333
TRUE BIAS (Z* - Z optimal): -0.6667
Difference between expected optimal and true 0.2490
The population variance is: 3.7599
The maximum value is: 220.5652
The minimum value is: 209.3271

Extreme Point # 2
2.0000
8.0000
0.0000
2.0000

It OF EXT PT VISITS ARE: 1000
% OF OVERALL IS: 100.000
AVE. OPTIMUM IS: 215.6013
Bias opt est (Ave Opt-True Opt): -0.3987

TRUE Z* WITH TRUE C IS: 216.0000
TRUE BIAS (Z* - Z optimal): 0.0000
Diffe.rence between expected optimal and true 0.3987
The population variance is: 3.8427
The maximum value is: 221.0208
The minimum value is: 209.2253

!!!!!! !!!! HOVERALL RESULTS !! !!!!!! !!!!!!!

Overall. Mean Optimum is: 2.8948
Overall Bias (Ave Opt-True Opt): -213.1052
The overall sample variance is: 614.7244
The overall maximum value is: 221.0208
The overall minimum value is: 0.0000

AVE OPTIMAL PER OBJECTIVE FUNCTION
Mean of Mean Opt per obj funct: 2.8948
The sample var(mean opt): 0.0068
The maximum value is: 4.3585
The minimum value is: 2.8164
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NOISE MULTIPLIER (SD) FOR NORMAL NOISE: 5.00000
STANDARD ERROR IS : 1.25000
This is a screening run

Using a Design to sample
# Times failed to sample true extreme pt 0
Standard deviation mult set = 1.50000 2.75000
4.00000
Number of Objective Function Samples: 1000
Number of Runs per Obj Function: 149
Total Number of Points Tested: 149000
The True Objective Function:
const 10.00000+ 15.0000 17.0000 18.0000
20.0000
Sample Generated Objective Function

8.95856 15.9861 19.6851 19.5614 16.8254

Constraint Matrix
1 2 3 4

1 1 1 2 1
2 2 1 -1 1
3 -1 1 1 2

The RHS is: 12.0000 14.0000 10.00000
*True Optimal Answer: 216.000
*True optimal Extreme Point:

2.00000 8.00000 0. 2.00000

Design Matrix
1 2 3 4 5

1 1 -1 -1 -i -1
2 1 1 -1 -1 -I

3 1 -1 1 -i -1
4 1 1 1 -1 -1
5 1 -i -i 1 -i.

6 1 1 -1 1 -1
7 1 -1 1 1 -1
8 1 1 1 1 -1
9 1 -I -1 -I 1

10 1 i' -1 -1 1
11 1 -i 1 -1 1
12 3 1 1 -i 1
13 3 -1 -1 1 1

14 1 1 -I 1 
15 1 -1 1 1 1
16 1 1 1 1 1
Sample response varaible Y:

-70.7948 -33.0653 -25.8214 10.42741. -18.5379
17.4076 13.7993

43.6501 -25.0401 1.01661 11.4050 47.0496
3.49555 39.7061

55.2738 73.3654

Sample Variance-Covariance Matrix
1 2 3 4
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1 2.252 0.000 0.000 0.000
2 0.000 2.252 0.000 0.000
3 0.000 0.000 2.252 0.000
4 0.000 0.000 0.000 2.252

Sample Cholesky Factorization Matrix
1 2 3 4

1 1.501 0.000 0.000 0.000
2 1.501 0.000 0.000
3 1.501 0.000
4 1.501

SAMPLING DESING (BOX-BEHNKEN)
1 2 3 4

1 -1.0 -0.5 0.0 0.0
2 1.0 -0.5 0.0 0.0
3 -1.0 0.5 0.0 0.0
4 1.0 0.5 0.0 0.0
5 0.0 0.0 -1.0 -0.5
6 0.0 0.0 1.0 -0.5
7 0.0 0.0 -1.0 0.5
8 0.0 0.0 1.0 0.5
9 -1.0 0.0 0.0 -0.5

10 1.0 0.0 0.0 -0.5
11 -1.0 0.0 0.0 0.5
12 1.0 0.0 0.0 0.5
13 0.0 -1.0 -0.5 0.0
14 0.0 1.0 -0.5 0.0
15 0.0 -1.0 0.5 0.0
16 0.0 1.0 0.5 0.0
17 -1.0 0.0 -0.5 0.0
18 1.0 0.0 -0.5 0.0
19 -1.0 0.0 0.5 0.0
20 1.0 0.0 0.5 0.0
21 0.0 -1.0 0.0 -0.5
22 0.0 1.0 0.0 -0.5
23 0.0 -1.0 0.0 0.5
24 0.0 1.0 0.0 0.5
25 0.0 0.0 0.0 0.0
26 -0.5 -1.0 0.0 0.0
27 0.5 -1.0 0.0 0.0
28 -0.5 1.0 0.0 0.0
29 0.5 1.0 0.0 0.0
30 0.0 0.0 -0.5 -1.0
31 0.0 0.0 0.5 -1.0
32 0.0 0.0 -0.5 1.0
33 0.0 0.0 0.5 1.0
34 -0.5 0.0 0.0 -1.0
35 0.5 0.0 0.0 -1.0
36 -0.5 0.0 0.0 1.0
37 0.5 0.0 0.0 1.0
38 0.0 -0.5 -1.0 0.0
39 0.0 0.5 -1.0 0.0
40 0.0 -0.5 1.0 0.0

81



41 0.0 0.5 1.0 0.0
42 -0.5 0.0 -1.0 0.0
43 0.5 0.0 -1.0 0.0
44 -0.5 0.0 1.0 0.0
45 0.5 0.0 1.0 0.0
46 0.0 -0.5 0.0 -1.0
47 0.0 0.5 0.0 -1.0
48 0.0 -0.5 0.0 1.0
49 0.0 0.5 0.0 1.0
50 0.0 0.0 0.0 0.0

!!! !! !!!H!!!!!!! HDECISION VARIABLES !!!!!!!!!!!!!!
f OF DECISION VARIABLE SET CHANGES 3

Decision var set f 1
4.0000
0.0000
0.6667
6.6667

II of occurances of this basis: 1002
% of overall occurance is: 100.200
AVE. OPTIMUM IS: 212.5927
Bias opt est (Ave Opt-True Opt): -3.4073
The population variance is: 91.0682
The maximum value is: 248.6682
The minimum value is: 180.1154

Decision var set f 2
2.0000

10.0000
0.0000
0.0000

ft of occurances of this basis: 290
% of overall occurance is: 29.000
AVE. OPTIMUM IS: 218.1246
Bias opt est (Ave Opt-True Opt): 2.1246
The population variance is: 95.3511
The maximum value is: 245.0287
The minimum value is: 192.3946

Decision var set It 3
2.0000
8.0000
0.0000
2.0000

ft of occurances of this basis: 1000
% of overall occurance is: 100.000
AVE. OPTIMUM IS: 217.7167
Bias opt est (Ave Opt-True Opt): 1.7166
The population variance is: 107.4373
The maximum value is: 252.3086
The minimum value is: 185.5855
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!!!.........!!!!! THE EXTREME POINT !!!!!!!!!!!!!!!!!!!
NUMBER OF EXT POINTS VISITED IS: 4

Extreme Point # 1
4.0000
0.0000
0.6667
6.6667

# OF EXT PT VISITS ARE: 1002
% OF OVERALL IS: 100.200
AVE. OPTIMUM IS: 212.5927
Bias opt est (Ave Opt-True Opt): -3.4073

TRUE Z* WITH TRUE C IS: 215.3333
TRUE BIAS (Z* - Z optimal): -0.6667
Difference between expected optimal and true 2.7406
The population variance is: 91.0682
The maximum value is: 248.6682
The minimum value is: 180.1154

Extreme Point If 2
1.0000

11.0000
0.0000
0.0000

# OF EXT PT VISITS ARE: 287
% OF OVERALL IS: 28.700
AVE. OPTIMUM IS: 218.0409
Bias opt est (Ave Opt-True Opt): 2.0409

TRUE Z* WITH TRUE C IS: 210.0000
TRUE BIAS (Z* - Z optimal): -6.0000
Difference between expected optimal and true -8.0409
The population variance is: 95.5884
The maximum value is: 245.0287
The minimum value is: 192.3946

Extreme Point If 3
2.0000
8.0000
0.0000
2.0000

It OF EXT PT VISITS ARE: 1000
% OF OVERALL IS: 100.000
AVE. OPTIMUM IS: 217.7167
Bias opt est (Ave Opt-True Opt): 1.7166

TRUE Z* WITH TRUE C IS: 216.0000
TRUE BIAS (Z* - Z optimal): 0.0000
Difference between expected optimal and true -1.7167
The population variance is: 107.4373
The maximum value is: 252.3086
The minimum value is: 185.5855
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Extreme Point 14 4
2.0000

10.0000
0.0000
0.0000

' OF EXT PT VISITS ARE: 3
% OF OVERALL IS: 0.300
AVE. OPTIMUM IS: 226.1286
Bias opt est (Ave Opt-True Opt): 10.1286

TRUE Z* WITH TRUE C IS: 10.0000
TRUE BIAS (Z* - Z optimal): -206.0000
Difference between expected optimal and true -216.1286
The population variance is: 7.9169
The maximum value is: 229.8806
The minimum value is: 223.1049

OVERALL RESULTS !!!!!!!!!!!1!!!!! !!

Overall Mean Optimum is: 4.4164
Overall Bias (Ave Opt-True Opt): -211.5836
The overall sample variance is: 932.7665
The overall maximum value is: 252.3086
The overall minimum value is: 0.0000

AVE OPTIMAL PER OBJECTIVE FUNCTION
Mean of Mean Opt per obj funct: 3.3154
The sample var(mean opt): 0.4727
The maximum value is: 5.9063
The minimum value is: 2.5426
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NOISE MULTIPLIER (SD) FOR NORMAL NOISE: 9.00000
STANDARD ERROR IS : 2.25000
This is a screening run

Using a Design to sample
4 Times failed to sample true extreme pt 1
Standard deviation mult set = i.0000 2.75000
4.00000
% failures overall: 0.100
Number of Objective Function Samples: 1000
Number of Runs per Obj Function: 149
Total Number of Points Tested: 149000
The True Objective Function:
const 10.00000+ 15.0000 17.0000 18.0000
20.0000
Sample Generated Objective Function

11.3725 17.5542 15.3801 15.6525 22.4790

Constraint Matrix
1 2 3 4

1 1 1 2 1
2 2 1 -1 1
3 -1 1 1 2

The RHS is: 12.0000 14.0000 10.00000
*True Optimal Answer: 216.000
*True optimal Extreme Point:

2.00000 8.00000 0. 2.00000

Design Matrix
1 2 3 4 5

1 1 -1 -1 -2 -i
2 1 1 -1 -1 -1
3 1 -i 1 -i -i
4 1 1 1 -i -1
5 1 -i -1 1 -1
6 1 1 -1 1 -1
7 1 -1 1 1 -i
8 1 1 1 1 -1

9 1 -1 -1 -1 1
10 1 1 -1 -1 1
1i 1 -1 1 -1 1

12 1 1 1 -1 1
13 1 -1 -1 1 1
14 1 1 -i 1 1
15 1 -1 1 1 1

16 1 1 1 1 1
Sample response varaible Y:

-37.9410 -35.1582 -41.4563 20.0342 -29.4672
9.90238 2.25696

22.9770 -29.1399 17.1932 17.9181 54.3095
11.6460 60.9039

56.7295 81.2516

Sample Variance-Covariance Matrix
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1 2 3 4
1 9.011 0.000 0.000 0.000
2 0.000 9.011 0.000 0.000
3 0.000 0.000 9.011 0.000
4 0.000 0.000 0.000 9.011

Sample Cholesky Factorization Matrix
1 2 3 4

1 3.002 0.000 0.000 0.000
2 3.002 0,000 0.000
3 3.002 0.000
4 3.002

SAMPLING DESING (BOX-BEHNKEN)
1 2 3 4

1 -1.0 -0.5 0.0 0.0
2 1.0 -0.5 0.0 0.0
3 -1.0 0.5 0.0 0.0
4 1.0 0.5 0.0 0.0
5 0.0 0.0 -1.0 -0.5
6 0.0 0.0 1.0 -0.5
7 0.0 0.0 -1.0 0.5
8 0.0 0.0 1.0 0.5
9 -1.0 0.0 0.0 -0.5

10 1.0 0.0 0.0 -0.5
11 -1.0 0.0 0.0 0.5
12 1.0 0.0 0.0 0.5
13 0.0 -1.0 -0.5 0.0
14 0.0 1.0 -0.5 0.0
15 0.0 -1.0 0.5 0.0
16 0.0 1.0 0.5 0.0
17 -1.0 0.0 -0.5 0.0
18 1.0 0.0 -0.5 0.0
19 -1.0 0.0 0.5 0.0
20 1.0 0.0 0.5 0.0
21 0.0 -1.0 0.0 -0.5
22 0.0 1.0 0.0 -0.5
23 0.0 -1.0 0.0 0.5
24 0.0 1.0 0.0 0.5
25 0.0 0.0 0.0 0.0
26 -0.5 -1.0 0.0 0.0
27 0.5 -1.0 0.0 0.0
28 -0.5 1.0 0.0 0.0
29 0.5 1.0 0.0 0.0
30 0.0 0.0 -0.5 -1.0
31 0.0 0.0 0.5 -1.0
32 0.0 0.0 -0.5 1.0
33 0.0 0.0 0.5 1.0
34 -0.5 0.0 0.0 -1.0
35 0.5 0.0 0.0 -1.0
36 -0.5 0.0 0.0 1.0
37 0.5 0.0 0.0 1.0
38 0.0 -0.5 -1.0 0.0
39 0.0 0.5 -1.0 0.0
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40 0.0 -0.5 1.0 0.0
41 0.0 0.5 1.0 0.0
42 -0.5 0.0 -1.0 0.0
43 0.5 0.0 -1.0 0.0
44 -0.5 0.0 1.0 0.0
45 0.5 0.0 1.0 0.0
46 0.0 -0.5 0.0 -1.0
47 0.0 0.5 0.0 -1.0
48 0.0 -0.5 0.0 1.0
49 0.0 0.5 0.0 1.0
50 0.0 0.0 0.0 0.0

!!!!!HHH!!!!!!!!! DECISION VARIABLES !!!!! !!!!!!!
# OF DECISION VARIABLE SET CHANGES 4

Decision var set U 1
4.0000
0.0000
0.6667
6.6667

U of occurances of this basis: 1000
% of overall occurance is: 100.000
AVE. OPTIMUM IS: 210.3186
Bias opt est (Ave Opt-True Opt): -5.6814
The population variance is: 306.0520
The maximum value is: 264.7609
The minimum value is: 158.1760

Decision var set U 2
1.0000

11.0000
0.0000
0.0000

U of occurances of this basis: 620
% of overall occurance is: 62.000
AVE. OPTIMUM IS: 220.3541
Bias opt est (Ave Opt-True Opt): 4.3540
The population variance is: 334.3401
The maximum value is: 267.6013
The minimum value is: 169.1727

Decision var set # 3
2.0000
8.0000
0.0000
2.0000

# of occurances of this basis: 999
% of overall occurance is: 99.900
AVE. OPTIMUM IS: 220.8882
Bias opt est (Ave Opt-True Opt): 4.8881
The population variance is: 442.1299
The maximum value is: 276.3776
The minimum value is: 161.5952
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Decision var set # 4
8.0000
0.0000
2.0000
0.0000

# of occurances of this basis: 19
% of overall occurance is: 1.900

AVE. OPTIMUM IS: 208.8170
Bias opt est (Ave Opt-True Opt): -7.1830
The population variance is: 380.0007
The maximum value is: 260.9492
The minimum value is: 171.0470

........! .! ..!!!! THE EXTREME POINT ! ! ! ! I I I I
NUMBER OF EXT POINTS VISITED IS: 5

Extreme Point # 1
4.0000
0.0000
0.6667
6.6667

If OF EXT PT VISITS ARE: 1000
% OF OVERALL IS: 100.000
AVE. OPTIMUM IS: 210.3186
Bias opt est (Ave Opt-True Opt): -5.6814

TRUE Z* WITH TRUE C IS: 215.3333
TRUE BIAS (Z* - Z optimal): -0.6667
Difference between expected optimal and true 5.0147
The population variance is: 306.0520
The maximum value is: 264.7609
The minimum value is: 158.1760

Extreme Point # 2
1.0000

11.0000
0.0000
0.0000

# OF EXT PT VISITS ARE: 558
% OF OVERALL IS: 55.800
AVE. OPTIMUM IS: 220.3984
Bias opt est (Ave Opt-True Opt): 4.3984

TRUE Z* WITH TRUE C IS: 212.0000
TRUE BIAS (Z* - Z optimal): -4.0000
Difference between expected optimal and true -8.3984
The population variance is: 336.2216
The maximum value is: 267.6013
The minimum value is: 169.1727

Extreme Point 3
2.0000
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8.0000
0.0000
2.0000

# OF EXT PT VISITS ARE: 999
% OF OVERALL IS: 99.900
AVE. OPTIMUM IS: 220.8882
Bias opt est (Ave Opt-True Opt): 4.8881

TRUE Z* WITH TRUE C IS: 216.0000
TRUE BIAS (Z* - Z optimal): 0.0000
Difference between expected optimal and true -4.8881
The population variance is: 442.1299
The maximum value is: 276.3776
The minimum value is: 161.5952

Extreme Point # 4
2.0000

10.0000
0.0000
0.0000

# OF EXT PT VISITS ARE: 62
% OF OVERALL IS: 6.200
AVE. OPTIMUM IS: 219.9551
Bias opt est (Ave Opt-True Opt): 3.9550

TRUE Z* WITH TRUE C IS: 166.0000
TRUE BIAS (Z* - Z optimal): -50.0000
Difference between expected optimal and true -53.9551
The population variance is: 317.2269
The maximum value is: 257.6813
The minimum value is: 174.5772

Extreme Point # 5
8.0000
0.0000
2.0000
0.0000

f OF EXT PT VISITS ARE: 19
% OF OVERALL IS: 1.900
AVE. OPTIMUM IS: 208.8170
Bias opt est (Ave Opt-True Opt): -7.1830

TRUE Z* WITH TRUE C IS: 10.0000
TRUE BIAS (Z* - Z optimal): -206.0000
Difference between expected optimal and true -198.8170
The population variance is: 380.0007
The maximum value is: 260.9492
The minimum value is: 171.0470

!!!!!!'!!!!!!!!!!!!! OVERALL RESULTS !!!!!!!!!!!!!!!!!!!!

Overall Mean Optimum is: 6.1288
Overall Bias (Ave Opt-True Opt): -209.8712
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The overall sample variance is-: 1298.7844
The overall maximum value is: 276.3776
The overall minimum value is: 0.0000

AVE OPTIMAL PER OBJECTIVE FUNCTION
Mean of Mean Opt per obj funct: 3.8361
The sample var(mean opt): 0.8616
The maximium value is: 8.1238
The minimum value is: 2.3285
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NOISE MULTIPLIER (SD) FOR NORMAL NOISE: 13.0000
STANDARD ERROR IS : 3.25000
This is a screening run

Using a Design to sample
# Times failed to sample true extreme pt 5
Standard deviation mult set = 1.50000 2.75000
4.00000
% failures overall: 0.500
Number of Objective Function Samples: 1000
Number of Rufis per Obj Function: 149
Total Number of Po'.nts Tested: 149000
The True Objective Function:
const 10.00000+ 15.0000 17.0000 18.0000
20.0000
Sample Generated Objective Function

11.8447 15.9522 17.5825 18.9583 16.7721

Constraint Matrix
1 2 3 4

1 1 1 2 1
2 2 1 -1 1
3 -1 1 1 2

The RHS is: 12.0000 14.0000 10.00000
*True Optimal Answer: 216.000
*True optimal Extreme Point:

2.00000 8.00000 0. 2.00000

Design Matrix
1 2 3 4 5

1 1 -1 -i -1 -3.
2 1 1 -1 -i -i

3 1 -1 1 -1 -i

4 1 1 1 -1 -1
51 -1 -1 1 -1

6 1 1 -1 1 -1
7 1 -1 1 1 -1
8 1 1 1 1 -1

9 1 -1 -1 -1 1
10 1 1 -i -1 1
1i 1 -1 1 -1 1
12 1 1 1 -1 1
13 1 -i -1 1 1
14 1 1 -1 1 1
15 1 -1 1 1 1

16 1 1 1 1 1
Sample response varaible Y:

-45.8560 -25.5360 -27.8729 16.8729 -22.9366
2.03671 12.6677

51.2050 -26.2992 4.34243 -8.73610 56.1767
25.7303 42.6163

60.4428 74.6617

Sample Variance-Covariance Matrix
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1 2 3 4
1 7.179 0.000 0.000 0.000
2 0.000 7.179 0.000" 0.000
3 0.000 0.000 7.179 0.000
4 0.000 0.000 0.000 7.179

Sample Cholesky Factorization Matrix
1 2 3 4

1 2.679 0.000 0.000 0.000
2 2.679 0.000 0.000
3 2.679 0.000
4 2.679

SAMPLING DESING (BOX-BEHNKEN)
1 2 3 4

1 -1.0 -0.5 0.0 0.0
2 1.0 -0.5 0.0 0.0
3 -1.0 0.5 0.0 0.0
4 1.0 0.5 0.0 0.0
5 0.0 0.0 -1.0 -0.5
6 0.0 0.0 1.0 -0.5
7 0.0 0.0 -1.0 0.5
8 0.0 0.0 1.0 0.5
9 -1.0 0.0 0.0 -0.5

10 1.0 0.0 0.0 -0.5
11 -1.0 0.0 0.0 0.5
12 1.0 0.0 0.0 0.5
13 0.0 -1.0 -0.5 0.0
14 0.0 1.0 -0.5 0.0
15 0.0 -1.0 0.5 0.0
16 0.0 1.0 0.5 0.0
17 -1.0 0.0 -0.5 0.0
18 1.0 0.0 -0.5 0.0
19 -1.0 0.0 0.5 0.0
20 1.0 0.0 0.5 0.0
21 0.0 -1.0 0.0 -0.5
22 0 0 1.0 0.0 -0.5
23 0.0 -1.0 0.0 0.5
24 0.0 1.0 0.0 0.5
25 0.0 0.0 0.0 0.0
26 -0.5 -1.0 0.0 0.0
27 0.5 -1.0 0.0 0.0
28 -0.5 1.0 0.0 0.0
29 0.5 1.0 0.0 0.0
30 0.0 0.0 -0.5 -1.0
31 0.0 0.0 0.5 -1.0
32 0.0 0.0 -0.5 1.0
33 0.0 0.0 0.5 1.0
34 -0.5 0.0 0.0 -1.0
35 0.5 0.0 0.0 -1.0
36 -0.5 0.0 0.0 1.0
37 0.5 0.0 0.0 1.0
38 0.0 -0.5 -1.0 0.0
39 0.0 0.5 -1.0 0.0
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4Oi 0.0 -0.5 1.0 0.0
41 0.0 0.5 1.0 0.0
42 -0.5 0.0 -1.0 0.0
43 0.5 0.0 -1.0 0.0
44 -0.5 0.0 1.0 0.0
45 0.5 0.0 1.0 0.0
46 0.0 -0.5 0.0 -1.0
47 0.0 0.5 0.0 -1.0
48 0.0 -0.5 0.0 1.0
49 0.0 0.5 0.0- 1.0
50 0.0 0.0 0.0 0.0

I I I I I [.'!!DECISION VARIABLES!!HH!!!!!!!!
# OF DECISION VARIABLE SET CHANGES : 6

Decision var set If 1
4.0000
0.0000
0.6667
6.5667

If of occurances of this basis: 999
% of overall occurance is: 99.900
AVE. OPTIMUM IS: 208.5842
Bias opt est (Ave Opt-True Opt): -7.4158
The population variance is: 651.1973
The maximum value is: 288.6066
The minimum value is: 137.1993

Decision var set If 2
2.0000
8.0000
0.0000
2.0000

# of occurances of this basis: 995
% of overall occurance is: 99.500
AVE. OPTIMUM IS: 222.7262
Bias opt est (Ave Opt-True Opt): 6.7262
The population variance is: 841.8345
The maximum value is: 310.9501
The minimum value is: 145.5584

Decision var set # 3
1.0000

11.0000
0.0000
0.0000

# of occurances of this basis: 806
% of overall occurance is: 80.600
AVE. OPTIMUM IS: 223.1638
Bias opt est (Ave Opt-True Opt): 7.1638
The population variance is: 721.3096
The maximum value is: 308.3556
The minimum value is: 150.9656
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Decision var set # 4
8.0000
0.0000
2.0000
0.0000

# of occurances of this basis: 103
% of overall occurance is: 10.300
AVE. OPTIMUM IS: 225 2866
Bias opt est (Ave Opt-True Opt): 9.2865
The population variance is: 760.8097
The maximum value is: 283.2927
The minimum value is: 151.0016

Decision var set # 5
0.0000
0.0000
4.6667
2.6667

# of occurances of this basis: 7
% of overall occurance is: 0.700
AVE. OPTIMUM IS: 168.4372
Bias opt est (Ave Opt-True Opt): -47.5629
The population variance is: 661.1362
The maximum value is: 219.5729
The minimum value is: 139.5171

Decision var set it 6
0.0000
8.0000
2.0000
0.0000

of occurances of this basis: 5
% of overall occurance is: 0.500
AVE. OPTIMUM IS: 163.4464
Bias opt est (Ave Opt-True Opt): -52.5536
The population variance is: 165.5492
The maximum value is: 187.7662
The minimum value is: 149.7473

.!!!!!!!!!!!!!!!] THE EXTREME POINT!!!!!!!!!!!!!!!!!z
NUMBER OF EXT POINTS VISITED IS: 7

Extreme Point # 1
4.0000
0.0000
0.6667
6.6667

# OF EXT PT VISITS ARE: 999
% OF OVERALL IS: 99.900
AVE. OPTIMUM IS: 208.5842
Bias opt est (Ave Opt-True Opt): -7.4158
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TRUE Z* WITH TRUE C IS: 215.3333
TRUE BIAS (Z* - Z optimal): -0.6667
Difference between expected optimal and true 6.7491
The population variance is: 651.1973
The maximum value is: 288.6066
The minimum value is: 137.1993

Extreme Point # 2
2.0000
8.0000
0.0000
2.0000

# OF EXT PT VISITS ARE: 995
% OF OVERALL IS: -99.500
AVE. OPTIMUM IS: 222.7262
Bias opt est (Ave Opt-True Opt): 6.7262

TRUE Z* WITH TRUE C IS: 216.0000
TRUE BIAS (Z* - Z optimal): 0.0000
Difference between expected optimal and true -6.7262
The population variance is: 841.8345
The maximum value is: 310.9501
The minimum value is: 145.5584

Extreme Point i 3
1.0000
11.0000
0.0000
0.0000

OF EXT PT VISITS ARE: 661
% OF OVERALL IS: 66.1.00
AVE. OPTIMUM IS: 221.9296
Bias opt est (Ave Opt-True Opt): 5.9295

TRUE Z* WITH TRUE C IS: 212.0000
TRUE BIAS (Z* - Z optimal): -4.0000
Difference between expected optimal and true -9.9296
The population variance is: 700.3993
The maximum value is: 297.5756
The minimum value is: 153.1106

Extreme Point 4 4
2.0000

10.0000
0.0000
0.0000

# OF EXT PT VISITS ARE: 145
% OF OVERALL IS: 14.500
AVE. OPTIMUM IS: 228.7902
Bias opt est (Ave Opt-True Opt): 12.7901

TRUE Z* WITH TRUE C IS: 166.0000
TRUE BIAS (Z* - Z optimal): -50.0000
Difference between expected optimal and true -62.7902
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The population variance is: 778.0309
The maximum value is: 308.3556
The minimum value is: 150.9656

Extreme Point # 5
8.0000
0.0000
2.0000
0.0000

# OF EXT PT VISITS ARE: 103
% OF OVERALL IS: 10.300
AVE. OPTIMUM IS: 225.2866
Bias opt est (Ave Opt-True Opt): 9.2865

TRUE Z* WITH TRUE C IS: 147.3333
TRUE BIAS (Z* - Z optimal): -68.6667
Difference between expected optimal and true -77.9532
The population variance is: 760.8097
The maximum value is: 283.2927
The minimum value is: 151.0016

Extreme Point U 6
0.0000
0.0000
4.6667
2.6667

U OF EXT PT VISITS ARE: 7
% OF OVERALL IS: 0.700
AVE. OPTIMUM IS: 168.4372
Bias opt est (Ave Opt-True Opt): -47.5629

TRUE Z* WITH TRUE C IS: 182.0000
TRUE BIAS (Z* - Z optimal): -34.0000
Difference between expected optimal and true 13.5628
The population variance is: 661.1362
The maximum value is: 219.5729
The minimum value is: 139.5171

Extreme Point # 7
0.0000
8.0000
2.0000
0.0000

U OF EXT PT VISITS ARE: 5
% OF OVERALL IS: 0.500
AVE. OPTIMUM IS: 163.4464
Bias opt est (Ave Opt-True Opt): -52.5536

TRUE Z* WITH TRUE C IS: 10.0000
TRUE BIAS (Z* - Z optimal): -206.0000
Difference between expected optimal and true -153.4464
The population variance is: 165.5492
The maximum value is: 187.7662
The minimum value is: 149.7473
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!!!! !!! !!! !!! !!!OVERALL RESULTS ! ! ! ! ! ! ! ! ! ! !

Overall Mean Optimum is: 7.9645
Overall Bias (Ave Opt-True Opt): -208.0355
The overall sample variance is: 1695.8068
The overall maximum value is: 310.9501
The overall minimum value is: 0.0000

AVE OPTIMAL PER OBJECTIVE FUNCTION
Mean of Mean Opt per obj funct: 4.2621
The sample var(mean opt): 1.5189
The maximum value is: 9.1224
The minimum value is: 2.0629
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NOISE MULTIPLIER (SD) FOR NORMAL NOISE: 17.0000
STANDARD ERROR IS : 4.25000
This is a screening run

Using a Design to sample
# Times failed to sample true extreme pt 19
Standard deviation mult set = 1.50000 2.75000
4.00000
% failures overall: 1.900
Number of Objective Function Samples: 1000
Number of Runs per Obj Function: 149
Total Number of Points Tested: 149000
The True Objective Function:
const 10.00000+ 15.0000 17.0000 18.0000
20.0000
Sample Generated Objective Function

8.30373 10.6681 21.0220 19.5529 19.5255

Constraint Matrix
1 2 3 4

1 1 1 2 1
2 2 1 -1 1
3 -1 1 1 2

The RHS is: 12.0000 14.0000 10.00000
*True Optimal Answer: 216.000
*True optimal Extreme Point:

2.00000 8.00000 0. 2.00000

Design Matrix
1 2 3 4 5

1 1 -1 -1 -1 -I
2 1 1 -1 -1 -1
3 1 -1 1 -1 -1
4 1 1 1 -i -1
5 1 -1 -1 1 -1
6 1 1 -1 1 -1
7 1 -1 1 1 -1
8 1 1 1 1 -1
9 1 -I -1 -1 1

10 1 1 -1 -1 1
11 1 -i 1 -i 1
12 1 1 1 -1 1
13 1 -1 -1 1 1
14 1 1 -1 1 1
15 1 -1 1 1 1
16 1 1 1 1 1
Sample response varaible Y:

-54.3485 -48.7402 -26.4912 16.6902 -35.1069
4.32857 2.29300

51.6007 -26.1163 -5.40654 16.1785 38.2412
32.9653 30.6787

71.7110 64.3823

Sample Variance-Covariance Matrix
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1 2 3 4
1 10.04 0.00 0.00 0.00
2 0.00 10.04 0.00 0.00
3 0.00 0.00 10.04 0.00
4 0.00 0.00 0.00 10.04

Sample Cholesky Factorization Matrix
1 2 3 4

1 3.169 0.000 0.000 0.000
2 3.169 0.000 0.000
3 3.169 0.000
4 3.169

SAMPLING DESING (BOX-BEHNKEN)
1 2 3 4

1 -1.0 -0.5 0.0 0.0
2 1.0 -0.5 0.0 0.0
3 -1.0 0.5 0.0 0.0
4 1.0 0.5 0.0 0.0
5 0.0 0.0 -1.0 -0.5
6 0.0 0.0 1.0 -0.5
7 0.0 0.0 -1.0 0.5
8 0.0 0.0 1.0 0.5
9 -1.0 0.0 0.0 -0.5

10 1.0 0.0 0.0 -0.5
11 -1.0 0.0 0.0 0.5
12 1.0 0.0 0.0 0.5
13 0.0 -1.0 -0.5 0.0
14 0.0 1.0 -0.5 0.0
15 0.0 -1.0 0.5 0.0
16 0.0 1.0 0.5 0.0
17 -1.0 0.0 -0.5 0.0
18 1.0 0.0 -0.5 0.0
19 -1.0 0.0 0.5 0.0
20 1.0 0.0 0.5 0.0
21 0.0 -1.0 0.0 -0.5
22 0.0 1.0 0.0 -0.5
23 0.0 -1.0 0.0 0.5
24 0.0 1.0 0.0 0.5
25 0.0 0.0 0.0 0.0
26 -0.5 -1.0 0.0 0.0
27 0.5 -1.0 0.0 0.0
28 -0.5 1.0 0.0 0.0
29 0.5 1.0 0.0 0.0
30 0.0 0.0 -0.5 -1.0
31 0.0 0.0 0.5 -1.0
32 0.0 0.0 -0.5 1.0
33 0.0 0.0 0.5 1.0
34 -0.5 0.0 0.0 -1.0
35 0.5 0.0 0.0 -1.0
36 -0.5 0.0 0.0 1.0
37 0.5 0.0 0.0 1.0
38 0.0 -0.5 -1.0 0.0
39 0.0 0.5 -1.0 0.0
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40 0.0 -0.5 1.0 0.0
41 0.0 0.5 1.0 0.0
42 -0.5 0.0 -1.0 0.0
43 0.5 0.0 -1.0 0.0
44 -0.5 0.0 1.0 0.0
45 0.5 0.0 1.0 0.0
46 0.0 -0.5 0.0 -1.0
47 0.0 0.5 0.0 -1.0
48 0.0 -0.5 0.0 1.0
49 0.0 0.5 0.0 1.0
50 0.0 0.0 0.0 0.0

!!!! !!!! !!!! !!!DECISION VARIABLES ! ! ! ! ! ! ! ! !

It OF DECISION VARIABLE SET CHANGES : 7

Decision var set If 1
4.0000
0.0000
0.6667
6.6667

If of occurances of this basis: 1001
% of overall occurance is: 100.100
AVE. OPTIMUM IS: 207.5924
Bias opt est (Ave Opt-True Opt): -8.4077
The population variance is: 973.1924
The maximum value is: 304.9121
The minimum value is: 103.5766

Decision var set If 2
1.0000

11.0000
0.0000
0.0000

It of occurances of this basis: 912
% of overall occurance is: 91.200
AVE. OPTIMUM IS: 225.7134
Bias opt est (Ave Opt-True Opt): 9.7133
The population variance is: 1225.7222
The maximum value is: 336.5096
The minimum value is: 129.2516

Decision var set # 3
2.0000
8.0000
0.0000
2.0000

# of occurances of this basis: 981
% of overall occurance is: 98.100
AVE. OPTIMUM IS: 227.2527
Bias opt est (Ave Opt-True Opt): 11.2526
The population variance is: 1432.8307
The maximum value is: 371.2051
The minimum value is: 120.2687
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Decision var set If 4
8.0000
0.0000
2.0000
0.0000

# of occurances of this basis: 188
% of overall occurance is: 18.800

AVE. OPTIMUM IS: 232.0063
Bias opt est (Ave Opt-True Opt): 16.0063
The population variance is: 1289.7496

The maximum value is: 319.6638
The minimum value is: 122.2305

Decision var set If 5
0.0000
8.0000
2.0000
0.0000

If of occurances of this basis: 51
% of overall occurance is: 5.100
AVE. OPTIMUM IS: 174.5180
Bias opt est (Ave Opt-True Opt): -41.4821
The population variance is: 595.1209
The maximum value is: 222.3652
The minimum value is: 113.8435

Decision var set If 6
0.0000
0.0000
4.6667
2.6667

If of occurances of this basis: 47
% of overall occurance is: 4.700
AVE. OPTIMUM IS: 164.8198
Bias opt est (Ave Opt-True Opt): -51.1802
The population variance is: 478.3920
The maximum value is: 223.9326
The minimum value is: 128.0441

Decision var set # 7
0.0000
0.0000
6.0000
0.0000

If of occurances of this basis: 19
% of overall occurance is: 1.900
AVE. OPTIMUM IS: 175.7839
Bias opt est (Ave Opt-True Opt): -40.2161
The population variance is: 1132.7343
The maximum value is: 243.3237
The minimum value is: 127.3116
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.!.!.... !.!. . ! I . . THE EXTREME POINT ! !!!!!!!! I I
NUMBER OF EXT POINTS VISITED IS: 8

Extreme Point # 1
4.0000
0.0000
0.6667
6.6667

# OF EXT PT VISITS ARE: 1001
% OF OVERALL IS: 100.100
AVE. OPTIMUM IS: 207.5924
Bias opt est (Ave Opt-True Opt): -8.4077

TRUE Z* WITH TRUE C IS: 215.3333
TRUE BIAS (Z* - Z optimal): -0.6667
Difference between expected optimal and true 7.7410
The population variance is: 973.1924
The maximum value is: 304.9121
The minimum value is: 103.5766

Extreme Point I 2
1.0000

11.0000
0.0000
0.0000

11 OF EXT PT VISITS ARE: 736
% OF OVERALL IS: 73.600
AVE. OPTIMUM IS: 224.227C
Bias opt est (Ave Opt-True Opt): 8.2276

TRUE Z* WITH TRUE C IS: 212.0000
TRUE BIAS (Z* - Z optimal): -4.0000
Difference between expected optimal and true -12.2276
The population variance is: 1152.1857
The maximum value is: 314.2408
The minimum value is: 129.2516

Extreme Point #I 3
2.0000

10.0000
0.0000
0.0000

# OF EXT PT VISITS ARE: 176
% OF OVERALL IS: 17.600
AVE. OPTIMUM IS: 231.9267
Bias opt est (Ave Opt-True Opt): 15.9266

TRUE Z* WITH TRUE C IS: 216.0000
TRUE BIAS (Z* - Z optimal): 0.0000
Difference between expected optimal and true -15.9266
The population variance is: 1485.4053
The maximum value is: 336.5096
The minimum value is: 129.5463
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Extreme Point It 4
2.0000
8.0000
0.0000
2.0000

4 OF EXT PT VISITS ARE: 981
% OF OVERALL IS: 98.100
AVE. OPTIMUM IS: 227.2527
Bias opt est (Ave Opt-True Opt): 11.2526

TRUE Z* WITH TRUE C IS: 166.0000
TRUE BIAS (Z* - Z optimal): -50.0000
Difference between expected optimal and true -61.2527
The population variance is: 1432.8307
The maximum value is: 371.2051
The minimum value is: 120.2687

Extreme Point 5
8.0000
0.0000
2.0000
0.0000

It OF EXT PT VISITS ARE: 188
% OF OVERALL IS: 18.800
AVE. OPTIMUM IS: 232.0063
Bias opt est (Ave Opt-True Opt): 16.0063

TRUE Z* WITH TRUE C IS: 182.0000
TRUE BIAS (Z* - Z optimal): -34.0000
Difference between expected optimal and true -50.0063
The population variance is: 1289.7496
The maximum value is: 319.6638
The minimum value is: 122.2305

Extreme Point # 6
0.0000
8.0000
2.0000
0.0000

# OF EXT PT VISITS ARE: 51
% OF OVERALL IS: 5.100
AVE. OPTIMUM IS: 174.5180
Bias opt est (Ave Opt-True Opt): -41.4821

TRUE Z* WITH TRUE C IS: 147.3333
TRUE BIAS (Z* - Z optimal): -68.6667
Difference between expected optimal and true -27.1846
The population variance is: 595.1209
The maximum value is: 222.3652
The minimum value is: 113.8435

Extreme Point # 7
0.0000
0.0000
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4.6667
2.6667

# OF EXT PT VISITS ARE: 47
% OF OVERALL IS: 4.700
AVE. OPTIMUM IS: 164.8198
Bias opt est (Ave Opt-True Opt): -51.1802

TRUE Z* WITH TRUE C IS: 118.0000
TRUE BIAS (Z* - Z optimal): -98.0000
Difference between expected optimal and true -46.8198
The population variance is: 478.3920
The maximum value is: 223.9326
The minimum value is: 128.0441

Extreme Point # 8
0.0000
0.0000
6.0000
0.0000

# OF EXT PT VISITS ARE: 19
% OF OVERALL IS: 1.900
AVE. OPTIMUM IS: 175.7839
Bias opt est (Ave Opt-True Opt): -40.2161

TRUE Z* WITH TRUE C IS: 10.0000
TRUE BIAS (Z* - Z optimal): -206.0000
Difference between expected optimal and true -165.7839
The population variance is: 1132.7343
The maximum value is: 243.3237
The minimum value is: 127.3116

.!!! ! !! !!! H!! ! H!! OVERALL RESULTS !!!!!!!!!!!!!!!!!!!!!!

Overall Mean Optimum is: 9.9972
Overall Bias (Ave Opt-True Opt): -206.0028
The overall sample variance is: 2134.0967
The overall maximum value is: 371.2051
The overall minimum value is: 0.0000

AVE OPTIMAL PER OBJECTIVE FUNCTION
Mean of Mean Opt per obj funct: 4.6993
The sample var(mean opt): 2.0915
The maximum value is: 10.7572
The minimum value is: 1.6353
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